Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T23:27:04.196Z Has data issue: false hasContentIssue false

Characterization and Applicatons of Arsenic-Implanted Mocvd-Grown GaAs Structures

Published online by Cambridge University Press:  22 February 2011

Fereydoon Namavar
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
N. Kalkhoran
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
A. Cremins
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
S. Vernon
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730-2396
Get access

Abstract

Arsenic precipitates can be formed in GaAs using arsenic implantation and annealing, thereby producing very high resistivity (surface or buried) GaAs layers. Arsenic-implanted materials are similar to low-temperature (LT) GaAs:As buffer layers grown by molecular beam epitaxy (MBE) which are used for eliminating side- and backgating problems in GaAs circuits. Arsenic implantation is not only a simple and economical technique for device isolation but also can improve the quality of individual devices. Through surface passivation, arsenic implantation can reduce gate-to-drain leakage in and enhance the breakdown voltage of GaAs-based metal semiconductor field-effect transistors (MESFETs) and high electron mobility transistors (HEMTs). High resistivity thin surface layers may be used as gate insulators for GaAs-based metal insulator semiconductor (MIS) FETs, leading to the development of a novel GaAs-based complementary metal insulator semiconductor (CMIS) technology like advanced Si-based complementary metal oxide semiconductor (CMOS) technology but with higher radiation hardness and operational speed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Smith, F.W., Calawa, A.R., Chen, C.L., Manfra, M.J., and Mahoney, L.J., IEEE Elec. Dev. Lett. 9, 77 (1988).Google Scholar
2 Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., Mclnturff, D.R., Melloch, M.R., Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
3 Kaminska, M., Liliental-Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B.-Y., and Calawa, A.R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
4 Liliental-Weber, Z., Swider, W., Yu, K.M., Kortright, J., Smith, F.W., and Calawa, A.R., Appl. Phys. Lett. 58, 2153 (1991).Google Scholar
5 Kaminska, M., Weber, E.R., Liliental-Weber, Z., Leon, R., and Rek, Z.U., J. Vac. Sci. Technol. B7 (4), 710 (1989).Google Scholar
6 Chen, C.L., Smith, F.W., Clifton, B.J., Mahoney, L.J., Manfra, M.J. and Calawa, A.R., IEEE Elec. Dev. Lett. 12, 306 (1991).Google Scholar
7 Matyi, R.J., Melloch, M.R., and Woodall, J.M., Appl. Phys. Lett. 60, 2642 (1992).Google Scholar
8 Trew, R.J., Mishra, U.K., IEEE Elec. Dev. Lett. 12, 524 (1991).Google Scholar
9 Melloch, M.R., Otsuka, N., Woodall, J.M., Warren, A.C., and Freeouf, J.L., Appl. Phys. Lett. 57 (15), 1531 (1990).Google Scholar
10 Claverie, A., Namavar, F., Liliental-Weber, Z., Appl. Phys. Lett 62, 11 (1993).Google Scholar
11 Liliental-Weber, Z., Namavar, F., Claverie, A., to be published in Ultramicroscopy, 1993.Google Scholar
12 Claverie, A., Namavar, F., Liliental-Weber, Z., Dreszer, P., Weber, E.R., LT MBE III-V Materials: Physics and Applications, EMRS Proc, 1993.Google Scholar