Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-19T19:02:03.784Z Has data issue: false hasContentIssue false

Characterization of SiC grown on Ge modified silicon substrates

Published online by Cambridge University Press:  21 March 2011

J. Pezoldt
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, Postfach 100565, D-98684 Ilmenau, Germany
Th. Stauden
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, Postfach 100565, D-98684 Ilmenau, Germany
Ch. Förster
Affiliation:
TU Ilmenau, Institut für Festkörperelektronik, Postfach 100565, D-98684 Ilmenau, Germany
P. Masri
Affiliation:
Universite de Montpellier, Groupe d'Etude des Semiconducteurs, 12 Place Eugene Bataillon, 34095 Montepellier CEDEX 5, France
Get access

Abstract

Silicon carbide layers were grown by solid source molecular beam epitaxy on silicon (111). Prior to the silicon carbide growth different amounts of germanium were predeposited on the silicon surface. Structural and morphological investigations with reflection high energy electron diffraction, x-ray diffraction, atomic force microscopy and spectroscopic ellipsometry revealed an improvement of the surface and interface properties for Ge coverages around and below 1 ML. The improved structural properties of the heterojunction lead to an amendment of the forward and reverse properties of the SiC/Si heterojunction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Müller, G., Krötz, G.H. and Niemann, E., Sensors and Actuators A43, 259 (1994).Google Scholar
2. Krötz, G.H., Eickhoff, M.H. and Möller, H., Sensors and Actuators A74, 182 (1999).Google Scholar
3. Keirwa, E.W. and Weiner, P.C., J. Electrochem. Soc. 136, 740 (1989).Google Scholar
4. Shor, J.S., Goldstein, D. and Kurtz, A.D., IEEE Trans. Electron. Dev. 40, 1093 (1993).Google Scholar
5. Wu, K.-H., Fang, Y.-K., Zhou, J.-H. and Ho, J.-J., Jpn. J. Appl. Phys. 36, 5151 (1997).Google Scholar
6. Liu, Y.M. and Prucnal, P.R., IEEE Photonics Technol. Lett. 5, 705 (1993).Google Scholar
7. Jackson, S.M., Reed, G.T. and Reeson, K.J., Electronics Lett. 31, 1438 (1995).Google Scholar
8. Tang, X., Irvine, K.G., Zhang, D. and Spencer, M.G., Appl. Phys. Lett. 59, 1938 (1991).Google Scholar
9. Davis, R. F., Thin Solid Films 181, 1 (1989).Google Scholar
10. Sugii, T., Ito, T., Furuma, Y., Doki, M., Mieno, F. and Maeda, M., J. Electrochem. Soc. 134, 2545 (1987).Google Scholar
11. Nishino, S., Tanaka, H., Takahashi, K. and Sarai, J., in Amorphous and Crystalline Silicon Carbide IV, edited by Yang, C.Y., Rahman, M.M. and Harris, G.L. (Springer Verlag, Berlin Heidelberg, 1992), p.411.Google Scholar
12. Liu, C.W. and Sturm, J.C., J. Appl. Phys. 82, 4558 (1997).Google Scholar
13. Camassel, J., J. Vac. Sci. Technol. B16, 1648 (1998).Google Scholar
14. Namar, F., Colter, P.C., Planes, N., Fraisse, B., Pernot, J., Juillaguet, S. and Camassel, J., Mater. Sci. Eng. B61–62, 571 (1999).Google Scholar
15. Purser, D., Jenkins, M., Lieu, D., Vaccaro, F., Faik, A., Hasan, M.A., Leamy, H.J., Carlin, C., Sardela, M.R. Jr., Zhao, Q., Willander, M. and Karlsteen, M., Mater. Sci. Forum 338–342, 313 (2000).Google Scholar
16. Zekentes, K. and Tsagaraki, T., Mater. Sci. Eng. B61–62, 559 (1999).Google Scholar
17. Masri, P., Moreaud, N., Averous, M., Stauden, Th., Wöhner, T. and Pezoldt, J., MRS Symp.Proc. 572, 213 (1999).Google Scholar
18. Fissel, A., Pfeninghaus, K., Kaiser, U., Kräußlich, J., Hobert, H., Schröter, B. and Richter, W., Mater. Sci. Forum 264–268, 255 (1998).Google Scholar
19. Ramm, J., Beck, E. and Zueger, A., MRS Symp. Proc. 220, 15 (1991).Google Scholar
20. Ramm, J., Beck, E., Zueger, A., Domman, A. and Pixley, R.E., Thin Solid Films 228, 23 (1993).Google Scholar
21. Scheiner, J., Goldhahn, R., Cimalla, V., Ecke, G., Attenberger, W., Lindner, J.K.N., Gobsch, G. and Pezoldt, J., Mater. Sci. Eng. B61–62, 526 (1999).Google Scholar
22. Masri, P., Moreaud, N., Laridjani, M. Rouhani, Callas, J., Averous, M., Chaix, G., Dollet, A, Berjoan, R. and Dupuy, C., Mater. Sci. Eng. B61–62, 535 (1999).Google Scholar
23. Kajiyama, Y., Tanishiro, Y. and Takayanagi, K., Surf. Sci. 222, 47 (1991).Google Scholar
24. Ichikawa, T. and Ino, S., Surf. Sci. 136, 267 (1984).Google Scholar
25. Martenssson, P., Ni, W.-X. and Hansson, G.V., Phys. Rev. B36, 5974 (1987).Google Scholar
26. Zhand, B., Northrup, J.E. and Cohen, M.L., Surf. Sci. 145, L465 (1984).Google Scholar
27. Hasegawa, S., Iwasaki, H., Li, S.-T. and Nakamura, S., Phys. Rev. B32, 6949 (1985).Google Scholar
28. Kajiyama, Y., Tanishiro, Y. and Takayanagi, K., Surf. Sci. 222, 47 (1991).Google Scholar
29. Veprek, S., Kunstmann, Th., Volm, D. and Meyer, B.K., J. Vac. Sci. Technol. A15, 10 (1997).Google Scholar
30. Nishino, S., Suhara, H., Ono, H. and Matsunami, H., J. Appl. Phys. 61, 4889 (1987).Google Scholar
31. Chaudry, M.I., IEEE Electron. Dev. Lett. 12 670 (1991).Google Scholar