Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T04:43:22.719Z Has data issue: false hasContentIssue false

Charge transfer of n-type GaN photoelectrolysis in HCl solution for H2 gas generation at a counterelectrode

Published online by Cambridge University Press:  01 February 2011

Katsushi Fujii
Affiliation:
k.fujii@nicp.jst.go.jp, Japan Science and Technology Agency, Nakamura Inhomogeneous Crystal Project, Tokyo Univ. of Science, Dept. of Applied Physics, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
Masato Ono
Affiliation:
j1205614@rs.kagu.tus.ac.jp, Tokyo University of Science, Dept. of Applied Physics, Japan
Takashi Ito
Affiliation:
j1205602@rs.kagu.tus.ac.jp, Tokyo University of Science, Dept. of Applied Physics, Japan
Kazuhiro Ohkawa
Affiliation:
ohkawa@rs.kagu.tus.ac.jp, Tokyo University of Science, Dept. of Applied Physics, Japan
Get access

Abstract

In order to clarify the charge transfer characteristics for H2 generation, photoelectrochemical properties of n-type GaN in HCl solution were investigated. The flatband potential under illumination and the onset voltages of photocurrent located approximately the same position. From the result, we concluded that the positively charged surface by hole capture is the main reason of the extra voltage requirement for H2 generation. The carrier concentration in n-type GaN also affects the photocurrent.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example, Nozik, A.J., Memming, R., J. Phys. Chem. 100, 13061 (1996).Google Scholar
2. Tomkiewicz, M., Fay, H., Appl. Phys. 18, 1 (1979).Google Scholar
3. Huygens, I.M., Strubbe, K., Gomes, W.P., J. Electrochem. Soc. 147, 1797 (2000).Google Scholar
4. Peng, L.-H., Chuang, C.-W., Ho, J.-K., Huang, C.-N., Chen, C.-Y., Appl. Phys. Lett. 72, 939 (1998).Google Scholar
5. Ko, C.H., Su, Y.K., Chang, S.J., Lan, W.H., Webb, J., Tu, M.C., Cherng, Y.T., Mat. Sci. and Eng. B 96, 43 (2002).Google Scholar
6. Grenko, J.A., Reynolds, C.L. Jr, Schlesser, R., Bachmann, K., Rietmeier, Z., Davis, R.F., Sitar, Z., MRS Internet J. of Nitride Semiconductor Res. 9, 5 (2004).Google Scholar
7. Fujii, K., Karasawa, T., Ohkawa, K., Jpn. J. Appl. Phys. 44, L543 (2005).Google Scholar
8. Fujii, K., Ohkawa, K., Jpn. J. Appl. Phys. 44, L909 (2005).Google Scholar
9. Fujii, K., Kusakabe, K., Ohkawa, K., Jpn. J. Appl. Phys. 44, 7433 (2005).Google Scholar
10. Fujii, K., Ohkawa, K., J. Electrochem. Soc. (to be published).Google Scholar
11. Huygens, I.M., Theuwis, A., Gomes, W.P., Strubbe, K., Phys. Chem. Chem. Phys. 4, 2301 (2002).Google Scholar
12. Memming, R., Semiconductor Electrochemistry, (Wiley-VCH, Weinheim, 2001), pp188194.Google Scholar