Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T10:20:58.307Z Has data issue: false hasContentIssue false

A Comparison of Electromigration in Bulk and Thin - Film Aluminum

Published online by Cambridge University Press:  15 February 2011

Anthony S. Oates*
Affiliation:
AT&T Bell Laboratories, 9333 S. John Young Parkway, Orlando, FL 32819
Get access

Abstract

The dominant mode of electromigration in polycrystalline Al thin - film conductors is along grain boundaries when the conductor width is significantly larger than the grain size. Integrated circuit feature sizes, however, have now decreased to the point where microstructures are no longer polycrystalline, but are near - bamboo. Electromigration must operate along pathways other than grain boundaries in the bamboo segments. Here drift velocity data is presented for bamboo microstructures with widths down to 0.6 μm and compared with drift data available in the literature for thin films with a variety of microstructures and bulk Al. Bamboo films show lower drift velocities and higher activation energies for drift than polycrystalline films. The data for bamboo microstructures is consistent with drift measurements performed on bulk Al indicating that the transport mechanism in bamboo films is identical to that in bulk Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Oates, A. S., Barr, D. L., J. Elec. Mat., 23 (1), 63, (1994).Google Scholar
2 Hu, C. K., Small, M. B., Rodbell, K. P., Stanis, C., Blauner, P., Appl. Phys. Lett., 62 (9), 1023, (1993).Google Scholar
3 Balluffi, R. W., Blakely, J. M., Thin Sol. Films , 25, 363, (1975).Google Scholar
4 Blech, I. A., J. Appl. Phys., 47 (4), 1203, (1976).Google Scholar
5 Oates, A. S., J. Appl. Phys., 70 (10), 5369, (1991).Google Scholar
6 Hu, C. K., Thin Sol. Films (1994). in pressGoogle Scholar
7 Doan, N. V., Bocquet, J. L., Thin Sol. Films , 25, 15, (1975).Google Scholar
8 Peterson, N. L., Rothman, S. J., Phys. Rev. B , 1 (8), 3264, (1970).Google Scholar
9 Ho, P. S., J. Appl. Phys., 8 (10), 4534, (1973).Google Scholar
10 Volin, T. E., Balluffi, R. W., Phys. Stat. Solidi, 25, 163, (1968).Google Scholar
11 Seeger, A., Wolf, D., Mehrer, H., Phys. Stat. Solidi, 48, 481, (1971).Google Scholar
12 Peterson, N. L., Rothman, S. J., Phys. Rev. B , 17 (12), 4666, (1978).Google Scholar
13 Stoebe, T. G., Gulliver, R. D., Ogurtani, T. O., Huggins, R. A., Acta Met., 13, 701, (1965).Google Scholar
14 English, A. T., Kinsbron, E., J. Appl. Phys., 54 (1), 268, (1983).Google Scholar
15 Schreiber, H. U., Sol. St. El., 29 (9), 893, (1986).Google Scholar
16 Penney, R. V., J. Phys. Chem. Solids , 25, 335, (1964).Google Scholar
17 Heumann, T., Meiners, H., Z. Phys., 57, 571, (1966).Google Scholar
18 Hu, C. K., Small, M. B., Ho, P. S., J. Appl. Phys. , 74 (2), 969, (1993).Google Scholar
19 Grabe, B., Schreiber, H. U., Sol. St. El., 26 (10), 1023, (1983).Google Scholar
20 Van engelen, P. P. J., Dirks, A. G., Thin Sol. Films , 193/194, 999, (1990).Google Scholar
21 Schreiber, H. U., Grabe, B., Sol. St. El., 24 (12), 1135, (1981).Google Scholar
22 Hu, C. K., Ho, P. S., Small, M. B., J. Appl. Phys., 72 (1), 291, (1992).Google Scholar
23 Hu, C. K., Small, M. B., Rodbell, K. P., Stanis, C., Mazzeo, N., Blauner, P., Rosenberg, R., Ho, P. S., Mat. Res. Soc. Symp. Proc., 309, 111, (1993).Google Scholar