Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-27T01:17:02.042Z Has data issue: false hasContentIssue false

Construction of Band Profiles for Semiconductor Heterojunctions and Layered Structures

Published online by Cambridge University Press:  25 February 2011

J. W. Garland
Affiliation:
Microphysics Lab, Physics Department, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680
L. Kassel
Affiliation:
Microphysics Lab, Physics Department, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680
D. Yang
Affiliation:
Microphysics Lab, Physics Department, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680
Z. Zhang
Affiliation:
Microphysics Lab, Physics Department, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680
P. M. Raccah
Affiliation:
Microphysics Lab, Physics Department, University of Illinois at Chicago, P.O. Box 4348, Chicago, IL 60680
Get access

Abstract

Band profiles specify the position of all band edges as a function of distance from a sample surface or interface. They largely determine the electrical and optoelectronic properties of semiconductor heterostructures. Neither theory nor standard transport measurements alone have been able to give reliable values for band offsets, much less entire band profiles. However, the use of electroreflectance, which reveals crossover transitions between localized states or band edges present on opposite sides of an interface, and which allows us to measure accurately built-in fields, has allowed us to determine accurate band profiles for several types of semiconductor heterostructures. The procedure used to find the band profile is elucidated in detail for two technologically important cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Razeghi, M., Yang, D., Garland, J. W., Zhang, Z. and Xue, D. Z., to be published, SPIE Proceedings, Vol. 1675.Google Scholar
2. Yang, D., Garland, J. W., Raccah, P. M., Coluzza, C., Franki, P., Capizzi, M., Chambers, F. and Devane, G., Appl. Phys. Lett. 57, 2829 (1990).Google Scholar
3. Kassel, L., Garland, J. W., Abad, H., Raccah, P. M., Potts, J. E., Haase, M. A. and Cheng, H., Appl. Phys. Lett. 56, 42 (1990).CrossRefGoogle Scholar
4. Kassel, L., Garland, J. W., Raccah, P. M., Haase, M. A. and Cheng, H., Semi-cond. Sci. Technol. 6, A146 (1991).Google Scholar
5. Kassel, L., Garland, J. W., Raccah, P. M., Tamargo, M. C. and Farrell, H. H., Semicond. Sci. Technol. 6, A152 (1991).CrossRefGoogle Scholar
6. Garland, J. W., Zhang, Z., Kim, C., Yang, D. and Raccah, P. M., to be published, MRS Symposium Proceedings, Vol. 261.Google Scholar
7. Raccah, P. M., Garland, J. W., Zhang, Z., Lee, U., Xue, D. Z., Abels, L. L., Ugur, S. and Wilinsky, W., Phys. Rev. Lett. 53, 1958 (1984).Google Scholar
8. Dawson, P., Wilson, B. A., Tu, C. W. and Miller, R. C., Appl. Phys. Lett. 48. 541 (1986).Google Scholar
9. Omnes, F. and Razeghi, M., Appl. Phys. Lett. 59, 1034 (1991).CrossRefGoogle Scholar
10. Haase, M. A., Qiu, J., DePuydt, J. M. and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar