Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-16T13:42:29.347Z Has data issue: false hasContentIssue false

Controlled Formation of Buried Layers of Carbon

Published online by Cambridge University Press:  22 February 2011

D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, P.O. Box 1447, Normal, AL. 35762-1447, U.S.A.
R. L. Zimmerman
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, P.O. Box 1447, Normal, AL. 35762-1447, U.S.A.
G. M. Jenkins
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, P.O. Box 1447, Normal, AL. 35762-1447, U.S.A.
Get access

Abstract

Partially cured and cured PF-resin samples were prepared at 150°C, 170°C and at 200°C in an inert environment and then bombarded by MeV ion beams using protons, alphas and nitrogen. Using low ion beam current density, 100 to 500 pA/mm2 for the nitrogen ions, 10 to 20 nA/mm2 for the alpha ions, and 50 to 500 nA/mm2 for protons, we have produced buried carbon layers without breakdown i.e., crack formation. The thicknesses of the carbon layers produced were of the order of a few tens of nanometers at a depth of a few nanometers to several micrometers depending on the energy, the type of bombarding ions and the curing temperature of the precursor. The electrical resistivity of these layers was measured in situ and was reduced from 109 Ω-cm to 10 Ω-cm. The lowest resistivity, 10 Ω-cm, was measured in the alpha bombarded, 150°C heat-treated resin. The carbonized volumes were analyzed by Raman microprobe spectroscopy which showed that the strongest graphitic (G-line) and distorted (D-line) Raman signals observed were from the nitrogen and alpha irradiated samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Venkatensan, T., Levi, R., Banwell, T. C., Tombrello, T., Nicolet, M., Hamm, R. and Meixner, A. E. in Ion Beam Processes in Advanced Electronic Materials and Device Technology, edited by Eisen, F. H., Sigmon, T. W. and Appleton, B. R. (Mat. Res. Soc. Symp. Proc. 45, Pittsburgh, PA, 1985) p. 189.Google Scholar
2. Sofield, C. J., Sugden, S., Bedell, C. J., Graves, P. R. and Bridwell, L. B., Nucl. Instr. and Meth. B 67, 432 (1992).Google Scholar
3. Wang, Y. Q., Giedd, R. E. and Bridwell, L. B., Nucl. Instr. and Meth. B 79, 659 (1993).Google Scholar
4. Dresselhaus, M. S., Wasserman, B. and Wnek, G.E., Mat. Res. Soc. Symp. Proc. 27, 413 (1983).Google Scholar
5. Calcagno, L. and Foti, G., Nucl. Instr. and Meth. B 59/60, 1153 (1991).Google Scholar
6. Wang, Y., Mohite, S.S., Bridewell, L.B., Giedd, R.E. and Schofield, C.J., J. Mat. Res. 8, 388 (1993).Google Scholar
7. Jenkins, G. M., Ila, D. and Williams, E. K. in Polymer/Inorganic Interfaces, edited by Opila, R. L., Boerio, F. J. and Czanderna, A. W. (Mat. Res. Soc. Symp Proc. 304, Pittsburgh, PA, 1993) pp. 173177.Google Scholar
8. Ila, D., Evelyn, A. L., Jenkins, G. M., Nucl. Instr. & Meth. B, (in print) (1994).Google Scholar
9. Ila, D., Evelyn, A. L. and Jenkins, G. M., Mat. Res. Soc. Symp Proc. 321, (1993).Google Scholar
10. Jeoung, H-S. and White, R.C., Mat. Res. Soc. Symp. Proc. 235, 787 (1991).Google Scholar
11. Jenkins, G. M. and Kawamura, K., Polymeric Carbons - Carbon Fiber, Glass and Char, Cambridge University Press (1976).Google Scholar
12. Evelyn, A. L., Ila, D. and Jenkins, G. M., Nucl. Instr. & Method. B 85, 861 (1994).Google Scholar
13. Ila, D., Jenkins, G. M., Holland, L. R., Evelyn, A. L. and Jena, H., Vacuum 45, No.4, 451 (1994).Google Scholar
14. Ila, D., Evelyn, A. L., Jena, H. and Jenkins, G. M., Carbon 32, No. 7, 1211 (1993).Google Scholar
15. Ila, D., Jenkins, G. M., Holland, L. R., Thompson, J., Evelyn, A. L., Hodges, A., Zimmerman, R. L., Dalins, I., NucI. Inst. and Meth. in Phys. Research B 64, 439 (1992).Google Scholar
16. Sze, S. M., Semiconductor Devices-Physics & Technology, John Wiley & Sons, New York (1985).Google Scholar
17. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York (1985).Google Scholar
18. Vidano, R. and Fischbach, D.B., J. Am. Chem. Soc. 61, 13 (1978).Google Scholar