Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T11:23:33.252Z Has data issue: false hasContentIssue false

Crystal Chemistry of Colloids Obtained by Hydrolysis of Fe(III) in the Presence of SiO4 Ligands

Published online by Cambridge University Press:  18 March 2011

Emmanuel Doelsch
Affiliation:
CEREGE, Europole Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
Armand Masion
Affiliation:
CEREGE, Europole Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
Jérôme Rose
Affiliation:
CEREGE, Europole Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
William E.E. Stone
Affiliation:
CEREGE, Europole Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
Jean Yves Bottero
Affiliation:
CEREGE, Europole Méditerranéen de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 04, France
Paul M. Bertsch
Affiliation:
AACES-SREL, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
Get access

Abstract

The crystal chemistry of a number of Fe-Si systems (Si/Fe 0-4, pH 3-10) was investigated by combining local scale spectroscopic methods (EXAFS, FTIR and NMR) and at the semi local scale (SAXS). The Fe clusters within the precipitates have two growth regimes depending on the Si/Fe ratio: the growth is three and two dimensional for Si/Fe fl and Si/Fe ≤ 1 respectively. The presence of Fe-O-Si bonds within the precipitated phases has been demonstrated. Their formation and relative proportion was found to be very dependent on the pH and Si concentration The size of silica domains within the precipitates was shown to increase with increasing Si/Fe and/or decreasing pH. The high fractal dimension (Df) of the aggregates is attributed to the presence of the SiO4 ligands, but the evolution of Df linearly depends on the polymerization state of iron.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vempati, R.K. and Loeppert, R.H., Clays Clay Miner., 37, 273279 (1989).Google Scholar
2. Kandori, K., Uchida, S., Katoaka, S. and Ishikawa, T., J. Mater. Sci., 27, 719728. (1992).Google Scholar
3. Mayer, T.D. and Jarrell, W.M., Wat. Res., 30, 12081214. (1996).Google Scholar
4. Glasauer, S., Friedl, J. and Schwertmann, U., J. Colloid Interface Sci., 216, 106115 (1999).Google Scholar
5. Rose, J., Manceau, A., Bottero, J.Y., Masion, A. and Garcia, F., Langmuir, 12, 67016707. (1996).Google Scholar
6. Doelsch, E., Rose, J., Masion, A., Bottero, J.Y., Nahon, D. and Bertsch, P.M., Langmuir, 16, 47264731. (2000).Google Scholar
7. Masion, A., Tchoubar, D., Bottero, J.Y., Thomas, F. and Villiéras, F., Langmuir, 10, 43444348. (1994).Google Scholar
8. Masion, A., Bottero, J.Y., Thomas, F. and Tchoubar, D., Langmuir, 10, 43494352. (1994).Google Scholar
9. Bottero, J.Y., Manceau, A., Villiéras, F. and Tchoubar, D., Langmuir, 10, 316319. (1994).Google Scholar
10. Manceau, A., Ildefonse, P., Hazemann, J.L., Flank, A.M. and Gallup, D., Clays Clay Miner., 43, 304317. (1995).Google Scholar
11. Iler, R.K. The chemistry of silica. Solubility, polymerisation, colloid and surface properties and biochemistry.; John Wiley & Sons: New-York (NY), (1979).Google Scholar
12. Bottero, J.Y., Tchoubar, D., Arnaud, M. and Quienne, P., Langmuir, 7, 13651369. (1991).Google Scholar
13. Tchoubar, D., Bottero, J.Y., Quienne, P. and Arnaud, M., Langmuir, 7, 398402. (1991).Google Scholar