Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T12:25:11.887Z Has data issue: false hasContentIssue false

Defects Produced by High Energy Oxygen Ions Implanted in Silicon

Published online by Cambridge University Press:  21 February 2011

A. Grob
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), 23 rue du Loess, F-67037 Strasbourg Cedex, France
J. J. Grob
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), 23 rue du Loess, F-67037 Strasbourg Cedex, France
A. Perio
Affiliation:
Centre National d'Etudes des Télécommunications, BP 98, F-38243 Meylan Cedex, France
P. Thevenin
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), 23 rue du Loess, F-67037 Strasbourg Cedex, France
P. Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS n°292), 23 rue du Loess, F-67037 Strasbourg Cedex, France
Get access

Abstract

Rutherford backscattering/channeling analysis was used to study the damage creation processes occuring during 1 MeV O+ implantation in silicon. The target temperature was varied from RT to 500°C using beam heating. The corresponding damage profiles and dechanneling behaviour were studied. Several implantations were performed at 77K for comparison. Transmission electron microscopy observations were connected to the dechanneling measurements in order to determine the dominant kind of defect in each case.

For 77K implants, the defects are mainly interstitials distributed according the energy deposition in elastic collisions, extending up to the surface. At 500°C, the defects are imperfect dislocations confined in a narrow band around the mean range of oxygen ions. We demonstrate that dechanneling in samples implanted at intermediate temperatures results from a mixing of point defects and distorsion centers. The relative importance of the two kind of defects is followed as a function of implantation temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kosta, A. and Kalbitzer, S. in Ion Implantation in Semiconductors, edited by Namba, S. (Plenum New York, 1975) p.689.Google Scholar
[2] Pramanik, D. and Saxena, A.N., Nucl. Instr. and Methods, B21, 116 (1987).Google Scholar
[3] Grob, J.J., Grob, A., Thevenin, P., Siffert, P., d'Anterroches, C. and Golanski, A., MRS 1988 Fall Meeting, Boston (december 1988); to be published in Journal of Material Research.Google Scholar
[4] White, A.E., Short, K.T., Dynes, R.C., Hull, R. and Vandenberg, J.M., Nucl. Instr. And Methods B39, 253 (1989).Google Scholar
[5] Holland, O.W., El-Ghor, M.K. and White, C.W., Appl. Phys. Lett. 53 (14), 1282 (1988).Google Scholar
[6] Tamura, M., Natsuadi, N., Wada, Y. and Mitami, E., Nucl. Instr. and Methods B21, 438 (1987).Google Scholar
[7] Parry, P.D., J. Vac. Sci. Technol. 13 (2), 622 (1976).Google Scholar
[8] Chu, W.K., Mayer, J.W. and Nicolet, M.A., Backscattering Spectrometry (Academic Press, New York, 1978).Google Scholar
[9] Feldman, L.C., Mayer, J.W. and Picraux, S.T., Material Analysis by Ion Channeling (Academic Press, New York, 1982) Chapter 5.Google Scholar
[10] Feldman, L.C., Mayer, J.W. and Picraux, S.T., Material Analysis by Ion Channeling (Academic Press, New York, 1982) Chapter 4.Google Scholar
[11] Grob, J.J., Grob, A., Thevenin, P. and Siffert, P., Nucl. Instr. and Methods B30, 34 (1988).Google Scholar
[12] Quéré, Y. in “Session d'Etudes sur la Canalisation des Particules” (Ed. CEA-INSTN, 1974) p. 99.Google Scholar
[13] Gärtner, K., Hehl, K. and Schlotzhauer, G., Nucl. Instr. and Methods B4, 55 (1984).Google Scholar
[14] Mory, J. in “Session d'Etudes sur la Canalisation des Particules” (Ed. CEA-INSTN, 1974) p. 251.Google Scholar
[15] Quéré, Y., Phys. Stat. Sol. 30, 713 (1968).Google Scholar
[16] Morgan, D.V. and Vliet, D.V. Van in Atomic Collision Phenomena in Solids, edited by Palmer, D.W., Thompson, M.W. and Townsend, P.D., (North Holland, 1970) p. 477.Google Scholar
[17] Picraux, S.T., Rimini, E., Foti, G. and Campisano, S.U., Phys. Rev. B18 (5) 2078 (1978).Google Scholar
[18] Bentini, G.G., Bianconi, M. and Servidori, M., Nucl. Instr. and Methods B18, 145 (1987).Google Scholar
[19] Thompson, D.A. and Walker, R.S., Radiation Effects 36, 91 (1978).Google Scholar
[20] Meyer, L., Phys. Status Solid. 44, 253 (1972).Google Scholar
[21] Brice, D.K., Ion Implantation Ranges and Energy Deposition Distributions, Vol.1 (Plenum, New York, 1975).Google Scholar
[22] Grob, J.J. and Siffert, P., Nucl. Instr. and Methods 209, 413 (1983).Google Scholar
[23] Prunier, C., Ligeon, E., Bourret, A., Chami, A.C. and Oberlin, J.C., Nucl. Instr. And Methods B17, 227 (1986).Google Scholar
[24] Coffa, S., Calgagno, L., Spinella, C., Campisano, S.U., Foti, G., Rimini, E., Nucl. Instr. and Methods B39, 357 (1989).Google Scholar