Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T01:50:46.032Z Has data issue: false hasContentIssue false

Deposition and Crystallisation Behaviour of Amorphous Silicon Thin Films Obtained by Pyrolysis of Disilane Gas at Very Low Pressure

Published online by Cambridge University Press:  15 February 2011

T. Kretz
Affiliation:
Thomson-CSF LCR, 91404 Orsay Cedex, France
D. Pribat
Affiliation:
Thomson-CSF LCR, 91404 Orsay Cedex, France
P. Legagneux
Affiliation:
Thomson-CSF LCR, 91404 Orsay Cedex, France
F. Plais
Affiliation:
Thomson-CSF LCR, 91404 Orsay Cedex, France
O. Huet
Affiliation:
Thomson-CSF LCR, 91404 Orsay Cedex, France
M. Magis
Affiliation:
Thomson-CSF LCR, 91404 Orsay Cedex, France
Get access

Abstract

High purity amorphous silicon layers were obtained by ultrahigh vacuum (millitorr range) chemical vapor deposition (UHVCVD) from disilane gas. The crystalline fraction of the films was monitored by in situ electrical conductance measurements performed during isothermal annealings. The experimental conductance curves were fitted with an analytical expression, from which the characteristic crystallisation time, tc, was extracted. Using the activation energy for the growth rate extracted from our previous work, we were able to determine the activation energy for the nucleation rate for the analysed-films. For the films including small crystallites we have obtained En ∼ 2.8 eV, compared to En ∼ 3.7 eV for the completely amorphous ones.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kamins, T.I., Mandurah, M.M. and Saraswat, K.C., J. Electrochem. Soc. 125, 927 (1978).Google Scholar
2. Kinsbron, E., Sternheim, M. and Knoell, R., Appl. Phys. Lett. 42, 835 (1983).Google Scholar
3. Harbeke, G., Krausbauer, L., Steigmeier, E.F., Widmer, A.E., Kappert, H.F. and Neugebauer, , J. Electrochem. Soc. 131, 675 (1984).Google Scholar
4. Bisaro, R., Magariño, J., Proust, N. and Zellama, K., J. Appl. Phys. 59, 1167 (1986).Google Scholar
5. Meakins, D.B., Economou, N.A., Coxon, P.A., Stoemenos, J., Lowe, A. and Migliorato, P., Appl. Surf. Sci. 30, 372 (1987).Google Scholar
6. Joubert, P., Loisel, B., Chouan, Y. and Haji, L., J. Electrochem. Soc. 134, 2541 (1987).Google Scholar
7. Aoyama, T., Kawachi, G., Konishi, N., Suzuki, T., Okajima, Y. and Miyata, , J. Electrochem. Soc. 136, 1169 (1989).Google Scholar
8. Voutsas, A.T. and Hatalis, M.K., J. Electrochem. Soc. 139, 2659 (1992).Google Scholar
9. Hatalis, M.K. and Greve, D.W., J. Appl. Phys. 63. 2260 (1988).Google Scholar
10. Kretz, T., Stroh, R., Legagneux, P., Huet, O., Magis, M. and Pribat, D., to appear in Polycrystalline semiconductors III – Physics and Technology, Solid State Phenomena Vol. XXX, edited by Strunk, H.P., Wemer, J.H., Fortin, B. and Bonnaud, O. (Trans. Tech., Zürich, 1994).Google Scholar
11. Scheid, E., Mauduit, B. De, Taurines, P. and Bielle-Daspet, D., Jpn. J. Appl. Phys. 29, L2105 (1990).Google Scholar
12. Nakazawa, K., J. Appl. Phys. 69, 1703 (1991).Google Scholar
13. Hong, C.H., Park, C.Y. and Kim, H.J., J. Appl. Phys. 71, 5427 (1992).Google Scholar
14. Voutsas, A.T. and Hatalis, M.K., J. Electrochem. Soc. 140, 871 (1993).Google Scholar
15. Hasegawa, S., Sakamoto, S., Inokuma, T. and Kurata, Y., Appl. Phys. Lett. 62, 1218 (1993).Google Scholar
16. Akhtar, M., Dalal, V.L., Ramaprasad, K.R., Gau, S. and Cambridge, J.A., Appl. Phys. Lett. 41, 1146 (1982).H. Kanoii, O. Sugiura and M. Matsumura, Jpn. J. Appl. Phys. 32, 2613 (1993).Google Scholar
17. Kanoii, H., Sugiura, O. and Matsumura, M., Jpn. J. Appl. Phys. 32, 2613 (1993).Google Scholar
18. Scheid, E., Pedroviejo, J.J., Duverneuil, P., Gueye, M., Samitier, J., Hassani, A.EI et Bielle-Daspet, D., Mater. Sci. Eng. B17, 72 (1993).Google Scholar
19. Guillemet, J.P., Pieraggi, B., Mauduit, B. de and Claverie, A., to appear in Polycrystalline semiconductor III - Solid State Phenomena (see reference 10).Google Scholar
20. Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
21. Greve, D.W. and Racanelli, M., J. Vac. Sci. & Technol. B8, 511 (1990).Google Scholar
22. Pribat, D., Plais, F., Legagneux, P., Kretz, T., Stroh, R., Huet, O., Walaine, C., Magis, M., Jiang, N., Hugon, M.C. and Agius, B., to appear in Rev. Techn. Thomson-CSF, March 1994, in press.Google Scholar
23. Nakamura, A., Emoto, F., Fujii, E., Yamamoto, A., Uemoto, Y., Senda, K. and Kano, G., J. Appl. Phys. 66, 4248 (1989).Google Scholar
24. Noma, T., Yonehara, T. and Kumomi, H., Appl. Phys. Lett. 59, 653 (1991).Google Scholar
25. Batstone, J.L., Phil. Mag. A67, 51 (1993).Google Scholar
26. Landauer, R., J. Appl. Phys. 23, 779 (1952).Google Scholar
27. Avrami, M., J. Chem. Phys. 7, 1103 (1939).Google Scholar
28. Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).Google Scholar