Hostname: page-component-788cddb947-tr9hg Total loading time: 0 Render date: 2024-10-19T19:38:31.284Z Has data issue: false hasContentIssue false

Design of AlGaN/GaN Heterojunction Bipolar Transistor Structures

Published online by Cambridge University Press:  15 March 2011

Yumin Zhang
Affiliation:
Ruden Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Cheng Cai
Affiliation:
Ruden Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
P. Paul
Affiliation:
Ruden Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

The potential of III-nitride materials for the fabrication of bipolar transistors is investigated theoretically. Several different pseudomorphic AlGaN/GaN n-p-n heterojunction bipolar transistor structures are examined through calculations of their band profiles and majority carrier distributions in equilibrium. Spontaneous and piezoelectric polarization charges are utilized to create large hole sheet carrier densities in the base layer, thus minimizing the base spreading resistance. At the same time, a large accelerating field in the base can help reduce the base transit times of the electrons and, hence, increase the current gains of these devices. The effect of strain due to substrate mismatch is also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
2 Kim, M. E., Bayraktaroglu, B., and Gupta, A., HEMTs & HBTs: Devices, Fabrication, and Circuits, edited by Ali, F. and Gupta, A., Artech House, Boston, 1991.Google Scholar
3 Asbeck, P. M., Modern Semiconductor Device Physics, edited by Sze, S. M., John Wiley & Sons, New York, 1998.Google Scholar
4 Bykhovski, A., Gelmont, B., and Shur, M., and Khan, A., J. Appl. Phys. 77, 1616 (1995).Google Scholar
5 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys, Rev. B 56, R10024 (1997).Google Scholar
6 Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Hove, J. Van, and Redwing, J., Electron. Lett. 33, 1230 (1997).Google Scholar
7 Bykhovski, A., Gaska, R., Shur, M. S., Appl. Phys. Lett. 73, 3577 (1998).Google Scholar
8 Hellman, E. S., MIJ-NSR, 3, Art. 11 (1998).Google Scholar
9 Ambacher, O., Smart, J., Shealy, J. R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W. J., and Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W. and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
10 Kim, W., Salvador, A., Botchkarev, A. E., Aktas, O., Mohammad, S. N., and Morcoc, H., Appl. Phys. Lett. 69, 559 (1996).Google Scholar
11 Wickenden, D. K., Bargeron, C. B., Bryden, W. A., Miragliotta, J., and Kistenmacher, T. J., Appl. Phys. Lett. 65, 2024 (1994).Google Scholar
12 Bykhovski, A. D., Gelmont, B. L., and Shur, M. S., J. Appl. Phys. 81, 6332, 1997.Google Scholar
13 Skromme, B.J., Zhao, H., Wang, D., Kong, H.S., Leonard, M.T., Bulman, G.E., and Molnar, R.J., Appl. Phys. Lett. 71, 829 (1997).Google Scholar
14 Hearne, S., Chason, E., Han, J., Floro, J. A., Figiel, J., and Hunter, J., Amano, H., Tsong, I.S. T., Appl. Phys. Lett. 74, 356 (1999).Google Scholar
15 Albrecht, J.D., Wang, R., Ruden, P.P., Farahmand, M., Belotti, E., and Brennan, K.F., Mat. Res. Soc. Symp. Proc. 482, 815, 1998.Google Scholar
16 Jain, S.C., Willander, M., Narayan, J. and Overstraeten, R. Van, J. Appl. Phys., 87, 965 (2000).Google Scholar