Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T07:23:38.396Z Has data issue: false hasContentIssue false

Direct Evidence of Diffusion of Self-Interstitials in Silicon

Published online by Cambridge University Press:  15 February 2011

Gobinda Das*
Affiliation:
IBM General Technology Division, East Fishkill, New York 12533
Get access

Abstract

High temperature (1200°C) HCI oxidation treatment has been employed to float-zone (FZ) silicon wafers (625μm thick) containing swirl defects in order to study their diffusion characteristics. In treated wafers, swirl defects can be eliminated from both surfaces up to a depth of ∼30μm. In the bulk of the wafers, however, large swirl defects (A-swirls) rearrange themselves into many small defects. The untreated portions of wafers contain large swirl defects (A-swirls) that extend up to both surfaces. Since swirl defects are primarily clusters of silicon self-interstitials, their rearrangement in the bulk and elimination from the surfaces demonstrate that migration of interstitials takes place on a large scale and is not confined to SiO2/ silicon interface only. The above observations appear to provide direct evidence for the dominant role of self interstitials for diffusion mechanism in silicon at high temperature and can be rationalized in terms of an interstitialcy mechanism. Alternatively, however, dominance of interstitials can be related to a higher migration energy of vacancies proposed in a model where both species coexist at high temperature. The preference of one model over another must await theoretical calculations of diffusion energetics derived from both models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Swalin, R. A., J. Phys. Chem. Solids 18 290 (1961).Google Scholar
2. Petroff, P. M., DeKock, A. J. R., J. Crys. Growth 30 117 (1975).CrossRefGoogle Scholar
3. Foll, H., Kolbesen, B. O., Appl. Phy. 8 319 (1975).CrossRefGoogle Scholar
4. Seeger, A., Swanson, M. L., In Lattice Defects in Semiconductors, Hasiguti, R. R., Editor, University of Tokyo Press, Tokyo, 1968, p. 93.Google Scholar
5. Das, G., In High Voltage Electron Microscopy, Swann, P. R., Humphreys, C. J., Goringe, M. J., Editors, Academic Press London and New York, 1974, p. 277.Google Scholar
6. Seeger, A., Foll, H., Frank, W., Inst. Phys. Conf. Ser. No. 31, p. 12 (1977).Google Scholar
7. Booker, G. R., Stickler, R., Phil. Mag. 11 1303 (1965).Google Scholar
8. Hsieh, C. M. and Maher, D. M., J. Appl. Phys. 44 1302 (1973).Google Scholar
9. Hu, S. M., J. Appl. Phys. 45 1567 (1974).CrossRefGoogle Scholar
10. Maher, D. M., Staudinger, A., Patel, J. R., J. Appl. Phys. 47, 3813 (1976).Google Scholar
11. Varker, C. J., Ravi, K. V., J. Appl. Phys. 45 272 (1974).Google Scholar
12. Hu, S. M., J. Appl Phys. 4 165 (1975).Google Scholar
13. Shiraki, H., Jap. J. Appl. Phys. 15 83 (1976).Google Scholar
14. Hu, S. M., Appl. Phys. Lett. 36 561 (1980).Google Scholar
15. Abe, T., Kikuchi, K., Shirai, S., Semiconductor Silicon, 1977, Huff, H.R., Sirtl, E., Editors, The Electrochemical Society, Princeton, NJ, p. 95.Google Scholar
16. Secco D'Aragona, F., Phys. Stat. Sol. (a) 7 557 (1971).Google Scholar
17. Hu, S. M., J. Vac. Sci. Technol. 14 17 (1977).Google Scholar
18. Mayer, H. J., Mehrer, H., Maier, K., Inst. Phys. Conf. Ser. No. 31, 1977, p. 186.Google Scholar
19. Tan, T. Y., Gosele, U., Appl. Phy. Lett. 40 616, (1982).Google Scholar
20. Van Vechten, J. A., Phys. Rev. B4, 1482, (1974).Google Scholar
21. Watkins, G. D., Messmer, R. P., Weigel, C., Peak, D., Corbett, J. W., Phys. Rev. Lett. 27 1573, (1971).CrossRefGoogle Scholar
22. Singhal, S. P., Phys. Rev. B5 4203, (1972).Google Scholar