Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-07T22:18:46.902Z Has data issue: false hasContentIssue false

Dislocation Mobilities in GaN from Molecular Dynamics Simulations

Published online by Cambridge University Press:  02 February 2015

N. Scott Weingarten*
Affiliation:
U.S. Army Research Laboratory, Building 4600, Aberdeen Proving Ground, MD 21005, U.S.A.
Get access

Abstract

The results of molecular dynamics (MD) simulations of dislocation glide in GaN using a Tersoff potential are presented. The simulation methodology involves applying a constant shear stress to a single crystal system containing an individual dislocation, with multiple slip systems considered. Upon reaching a steady state, the dislocation velocity as a function of applied stress and temperature are determined. Edge dislocations with a-type Burgers vectors in the basal, prismatic and pyramidal planes have been analyzed over the temperature range of 300-1300K. The results from simulations of c-type edge dislocations at 1300 K are also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moram, M. A., Sadler, T. C., Häberlen, M., Kappers, M. J. and Humphreys, C. J., Appl. Phys. Lett. 97, 261907 (2010).CrossRefGoogle Scholar
Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie, J. P. and Gibart, P., Appl. Phys. Lett. 72, 2680 (1998).CrossRefGoogle Scholar
Bai, J., Wang, T., Comming, P., Parbrook, P., David, J. and Cullis, A., J. Appl. Phys. 99, 023513 (2006).CrossRefGoogle Scholar
Tang, T. Y., Shiao, W. Y., Lin, C. H., Shen, K. C., Huang, J. J., Ting, S. Y., Liu, T. C., Yang, C., Yao, C. L. and Yeh, J. H., J. Appl. Phys. 105, 023501 (2009).CrossRefGoogle Scholar
Colby, R., Liang, Z., Wildeson, I. H., Ewoldt, D. A., Sands, T. D., García, R. E. and Stach, E. A., Nano Lett. 10, 1568 (2010).CrossRefGoogle Scholar
Wu, C.-C., Weingarten, N. S. and Chung, P. W., Phys. Status Solidi C 11, 432 (2014).CrossRefGoogle Scholar
Hashimoto, T., Wu, F., Speck, J. S. and Nakamura, S., Nature Mater. 6, 568 (2007).CrossRefGoogle Scholar
ElAfandy, R. T., Majid, M. A., Ng, T. K., Zhao, L., Cha, D. and Ooi, B. S., Adv. Funct. Mater. 24, 2305 (2014).CrossRefGoogle Scholar
Jones, K., private communication.Google Scholar
Li, L., Yang, L., Cao, R., Xu, S. R., Zhou, X., Xue, J., Lin, Z., Ha, W., Zhang, J., Hao, Y., J. Cryst. Growth 387, 1 (2015).CrossRefGoogle Scholar
Batyrev, I. G., Wu, C.-C., Chung, P. W., Weingarten, N. S. and Jones, K. A., U.S. Army Research Laboratory Technical Report, ARL-TR-6350 (2013).Google Scholar
Weingarten, N. S. and Chung, P. W., Scripta Mat. 69, 311 (2013).CrossRefGoogle Scholar
Harafuji, K., Tsuchiya, T. and Kawamura, L., J. Appl. Phys. 96, 2513 (2004).CrossRefGoogle Scholar
Osetsky, Y. N. and Bacon, D. J., Modell. Simul. Mater. Sci. Eng. 11, 427 (2003)CrossRefGoogle Scholar
Plimpton, S.J., Comput, J.. Phys. 117, 119 (1995).Google Scholar
Nord, J., Albe, K., Erhart, P. and Nordlund, K., J. Phys. Condens. Matter 15, 5649 (2003).CrossRefGoogle Scholar
Zhou, X.W., Murdick, D.A., Gillespie, B. and Wadley, H.N.G., Phys. Rev. B 73, 045337 (2006).CrossRefGoogle Scholar
Zhou, X., Ward, D. K., Wong, B. M., Doty, F. P. and Zimmerman, J. A., J. Phys. Chem. C 116, 17563 (2012).CrossRefGoogle Scholar
Groh, S., Martin, E. B., Horstemeyer, M. F. and Bammann, D. J., Modell. Simul. Mater. Sci. Eng. 17, 075009 (2009).Google Scholar
Hull, D. and Baco, D. J., Introduction to Dislocations (Butterworth-Heinemann, Oxford, 2001), p 195.Google Scholar
Yonenaga, I. and Motoki, K., J. Appl. Phys. 90, 6539 (2001).CrossRefGoogle Scholar
Rodney, D., Phys. Rev. B 76, 144108 (2007).CrossRefGoogle Scholar