Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T00:37:49.003Z Has data issue: false hasContentIssue false

Investigation of Dynamical Temperature Behaviour in Rtp

Published online by Cambridge University Press:  21 February 2011

Gunnar Leitz
Affiliation:
Technische Universität Ilmenau, Institut für Festkörperelektronik, Postfach 327, 0-6300 Ilmenau, Germany
JÖrg Pezoldt
Affiliation:
Technische Universität Ilmenau, Institut für Festkörperelektronik, Postfach 327, 0-6300 Ilmenau, Germany
Ingo Patzschke
Affiliation:
Technische Universität Ilmenau, Institut für Festkörperelektronik, Postfach 327, 0-6300 Ilmenau, Germany
Jens-Peter ZÖllner
Affiliation:
Technische Universität Ilmenau, Institut für Festkörperelektronik, Postfach 327, 0-6300 Ilmenau, Germany
G. Eichhorn
Affiliation:
Technische Universität Ilmenau, Institut für Festkörperelektronik, Postfach 327, 0-6300 Ilmenau, Germany
Get access

Abstract

For Rapid Thermal Processing one of the essential problems is the dynamical temperature controlling to reduce temperature nonhomogeneities during heating up and cooling down, which are responsible for layer nonhomogeneities and slip generation. A pyrometer row consisting of five sensors is used for temperature distribution measurement in radial direction, which allows to investigate the dynamical behaviour during the heating cycles. Together with a developed software tool, which is suitable for calculation of the dynamical temperature distribution across the wafer under process conditions where the convective heat losses can be neglected, the influence of heating-up velocities is investigated. The obtained results show that in a scalar controlled system process conditions optimized for steady state lead to maximum temperature nonhomogeneity during the heating-up period, due to the changing heat balance in the system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kakoschke, R., Buβmann, E. and Föll, H., Appl.Phys. A52, 52 (1990).Google Scholar
2. Kohno, M., Hida, H., Ogawa, Y., Fujii, M., Maeda, T., Ohata, K. and Tsukada, Y., J.Appl.Phys. 69 1294 (1991).CrossRefGoogle Scholar
3. Campbell, St.A. and Knutson, K.L., IEEE Trans.Semicond.Manufact. 5, 302 (1992).Google Scholar
4. Kakoschke, R., Nucl.Instr.Meth.Phys.Res. B37/38, 753 (1989).Google Scholar
5. Deaton, R. and Massoud, H.Z., J.Appl.Phys. 70, 3588 (1991).CrossRefGoogle Scholar
6. Moslehi, M.M., IEEE Trans.Semicond.Manufact. 2 130 (1989).CrossRefGoogle Scholar
7. Roozeboom, F. and Parekh, N., J.Vac.Sci.Technol. B8, 1249 (1990).CrossRefGoogle Scholar
8. Lord, A.H., IEEE Trans.Semicond.Manufact. 1, 105 (1988).CrossRefGoogle Scholar
9. Apte, P.P. and Saraswat, K.C., IEEE Trans.Semicond.Manufact. 5, 180 (1992).Google Scholar
10. Moslehi, M.M., Davis, C.J. and Bowling, A., TI Technical Journal 1992 44.Google Scholar
11. Elbel, Th., Müller, J.E. and Völklein, F., Geritetechnik 34, 113 (1985).Google Scholar
12. Torber, K. Report No. 142–92D-02, TU Ilmenau, 1992.Google Scholar
13. Zöllner, J.-P., Pezoldt, J., Ullrich, K. and Eichhorn, G., Appl.Surf.Sci. 1993 to be published.Google Scholar
14. Zöllner, J.-P., Patzschke, I., Pietzuch, V., Pezoldt, J. and Eichhorn, G., this issue.Google Scholar