Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:02:31.291Z Has data issue: false hasContentIssue false

Effect of Morphology of ZnO Nanowire Arrays on Interfacial Shear Strength in Carbon Fiber Composites

Published online by Cambridge University Press:  31 January 2011

Ulises Galan
Affiliation:
mgalanve@asu.edu, Arizona State University, Mechanical and Aerospace Engineering, Tempe, Arizona, United States
Gregory Ehlert
Affiliation:
gregory.ehlert@asu.edu, Arizona State University, Mechanical and Aerospace Engineering, Tempe, Arizona, United States
Yirong Lin
Affiliation:
yirong.lin@asu.edu, Arizona State University, Mechanical and Aerospace Engineering, Tempe, Arizona, United States
Henry Angelo Sodano
Affiliation:
henry.sodano@asu.edu, Arizona State University, Mechanical and Aerospace Engineering, Tempe, Arizona, United States
Get access

Abstract

ZnO nanowire arrays are grown on carbon fiber to enhance the interface strength of a polymer matrix composite without degrading the base fiber and in-plane strength of the composite. The morphology of the nanowire array is controlled during growth to create nanowires with different aspect ratios to elucidate the structure-property relations of the interphase. Nanowires are shown to double the composite interfacial shear strength at an intermediate nanowire length, indicating that an optimal point exists and the interface can be engineered to maximize the interfacial enhancement. Furthermore, the observed effect of the morphology on interface strength indicates that the bond between the ZnO nanowire array and the carbon fiber is quite strong, more than twice as strong as the interaction between the matrix and control fiber.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Daniel, I. and Ishai, O. Engineering Mechanics of Composite Materials Materials, Oxford Univ. Press, Oxford, 2006.Google Scholar
2 Hyer, M. W. Stress Analysis of Fiber Reinforced Composites Materials, Materials, McGraw-Hill, New York, NY, 2001.Google Scholar
3 Kowbel, W. Bruce, C. Withers, J. and Ransone, P. Comp. A, 28, 9931000 (1997).Google Scholar
4 Sager, R. Klein, P. Lagoudas, D. Zhang, Q. Liu, J. Dai, L. and Baur, J. Comp. Sci. Tech, In press (2009).Google Scholar
5 Qu, L. Zhao, Y, and Dai, L. Small, 2, 8, 10521059 (2006)Google Scholar
6 Thostenson, E. Li, W. Wang, D. Ren, Z. and Chou, T, J. App. Phys., 91, 6034 (2002).Google Scholar
7 Thostenson, E. Li, C. and Chou, T. Comp. Sci. Tech., 65, 3, 491 (2005).Google Scholar
8 Boskovic, B.> et al. , Carbon, 43, 13, 2643 (2005).+et+al.+,+Carbon,+43,+13,+2643+(2005).>Google Scholar
9 Lin, Y. Ehlert, G. and Sodano, H. Adv. Func. Mater., In Press (2009).Google Scholar
10 Esawi, A. and Farag, M. Mater. Design, 28, 9, 23942401 (2007).Google Scholar
11 Wang, X. Song, J. Liu, J. Wang, Z. Science, 316, 5821, 102105 (2007).Google Scholar
12 Tang, Z. et al. , Appl. Phys. Lett., 72, 3270 (1998).Google Scholar
13 Law, M. Greene, L. Johnson, J. Saykally, R. and Yang, P. Nat. Mater., 4, 455459 (2005).Google Scholar
14 Wan, Q. et al. , Appl. Phys. Lett., 84, 3654 (2004).Google Scholar
15 Greene, L. Law, M. Tan, D. Montano, M. Goldberger, J. Somorjai, G. and Yang, P. Nanoletters, 5, 7, 1231 (2005).Google Scholar
16 Hu, Z. Oskam, G. and Searson, P. J. Col. and Int. Sci, 263, 454460 (2003).Google Scholar
17 Feih, S. Wonsyld, K. Minzari, D. Westermann, P. and Liholt, H. Riso-Report, R-1483(EN) (2004).Google Scholar
18 Wegner, G. Baum, P. Muller, M. Norwig, J. and Landfester, K. Macromol. Symp., 175, 349 (2001)Google Scholar
19 , Ravindran and Ozkan, C. Nanotechnology, 2005, 16, 11301136.Google Scholar
20 Palma, E. and Ibarra, L. Makro. Chemie, 220, 111122 (1994).Google Scholar