Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-16T00:40:55.442Z Has data issue: false hasContentIssue false

Effect of Oxygen on Radiation-Enhanced Diffusion in Silicon

Published online by Cambridge University Press:  15 February 2011

V.E. Borisenko*
Affiliation:
Minsk Radioengineering Institute, P.Browka 6, Minsk, Ussr
Get access

Abstract

Low-energy ion bombardment has been used to enhance diffusion of phosphorus and antimony atoms in silicon. Oxygen free silicon crystals both containing phosphorus and antimony doped surface layers and original crystals were bombarded at 400–700°C with 400 eV oxygen or argon ions. Impurity and electrical carrier profiles were measured to analyse the role of oxygen in the radiationenhanced diffusion. The results obtained are explained on assuming complexes such as vacancyoxygen and vacancy-substitutional impurity to be involved in the process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semiconductor Silicon 1981, ed. by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochemical Society, Pennington, NJ 1981).Google Scholar
2. Defects in Semiconductors, ed. by Narayan, J., and Tan, T. Y. (North-Holland, New York 1981).Google Scholar
3. Minear, R. L., Nelson, D. C., and Gibbons, J. F., J. Appl. Phys. 43, 3468 (1972).Google Scholar
4. Ohmura, Y., Mimura, S., Kanazawa, M., Abe, T., and Konaka, M., Rad. Eff. 15, 167 (1972).Google Scholar
5. Maby, E. W., J. Appl. Phys. 47, 830 (1976).Google Scholar
6. Baruch, P. in: Radiation Effects in Semiconductors, ed. by Urli, N. B., and Corbett, J. W. (Institute of Physics, Bristol 1977) p. 126.Google Scholar
7. Masters, B.J., and Gorey, E. F., J. Appl. Phys. 49, 2717 (1978).Google Scholar
8. Morikawa, Y., Yamamoto, K., and Nagami, K., Appl. Phys. Lett. 36, 997 (1980).Google Scholar
9. Labunov, V. A., Borisenko, V. E., and Ukhov, V. A., Elektron.Tekh. (Sov.) ser. 6, No 11, 72 (1977).Google Scholar
10. Akutagawa, W., Dunlap, H. L., Hart, R., and Marsh, O. J., J. Appl. Phys. 50, 777 (1979).Google Scholar
11. Borisenko, V. E., Buyko, L. D., Labunov, V. A., and Ukhov, V. A., Fiz. Tekh. Poluprov. (Soy.) 15, 3 (1981).Google Scholar
12. Labunov, V. A., Borisenko, V. E., Fiz. Tekh. Poluprov. (Sov.) 15, 1413 (1981).Google Scholar
13. Carter, G., and Armous, D. G., Thin Solid Films 80, 13 (1981).Google Scholar
14. Hu, S. M. in: Atomic Diffusion in Semiconductors, ed by Shaw, D. (Plenum-Press, New York 1973) p. 217.Google Scholar
15. Corbett, J. W., Karins, J. P., and Tan, T. Y., Nucl. Instr. Methods 182/183, 457 (1981).Google Scholar
16. Borisenko, V. E., Gorskaya, L. F., Dutov, A. G., Labunovand, V. A., Lobanova, K. E., Fiz. Tekh. Poluprov. (Sov.) 16, 910 (1982).Google Scholar