Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T05:37:47.314Z Has data issue: false hasContentIssue false

The Effect of the Adsorption of Metal Ions on the Interfacial Behavior of Silicate Minerals

Published online by Cambridge University Press:  10 February 2011

Picheng Huang
Affiliation:
Current address: Hazen Research, Inc.4601 Indiana Street, Golden, CO 80403
Douglas W. Fuerstenau
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
Get access

Abstract

Because of its importance in the fields of environmental and mineral engineering, the adsorption mechanism of metal ions on oxides has been studied rather extensively using such techniques as titration, adsorption isotherm determination, flotation and spectroscopy. However, limited work has been done to compare the behavior of hydrophilic silicates with those that are naturally hydrophobic. Our investigation was undertaken to provide a better understanding of the adsorption mechanism of selected metal ions at the solid/liquid interface through simultaneous measurements of zeta potentials, adsorption densities and turbidity on colloidal suspensions of two silicate minerals, quartz and talc, as a function of pH, to delineate the effect of hydrophobicity and surface heterogeniety on these processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schindler, I. P. W., Adsorption of Inorganics at Solid-Liquid Interfaces, Marc A. Anderson, and Alan J. Rubin Eds., Ann Arborr Science, Chap. 1, p. 281 (1988).Google Scholar
2. Parks, G. A., Mineral Water Interface Geochemistry, Chap. 4, pp.132175, Hochella, M.F. and White, Art F. eds., Published by Mineralogical Society of America (1990).Google Scholar
3. Fuestenau, D.W. and Ronaldo, Herrera-Urbina, Cationic Surfactants, Rubingh, Donn N. ed., Marcel Dekker, Inc., New York and Basel. Chap.8, pp.407447 (1991).Google Scholar
4. Davis, J. A., James, R. O. and Leckie, J. O., J. Colloid Interface Sci., 63, pp.480499 (1978).Google Scholar
5. Sposito, G., Mineral-Water Interface Geochemistry, Hochella, M.F. and White, Art F. eds., Published by Mineralogical Society of America, Chap. 6, pp.261279(1990).Google Scholar
6. Davis, J. A. and Kent, D. B., Mineral-Water Interface Geochemistry, Hochella, M. F. and White, Art F. eds., Published by Mineralogical Society of America, Chap. 5, pp. 177260 (1990).Google Scholar
7. Hayes, K. F., Redden, G., Ela, W.. and Leckie, J. O., J. Colloid Interface Sci., 115, (2), pp.564572 (1991).Google Scholar
8. Gaudin, A. M. and Fuerstenau, D.W., Trans. AIME, 22, pp.958962 (1955).Google Scholar
9. Fuerstenau, M. C. and Atak, S., Trans. AIME, p.24 (1965).Google Scholar
10. James, R. O. and Healy, T. W., J. Colloid Interf. Sci., 40, No.1, pp.5364, pp.65–81 (1972).Google Scholar
11. Qun, X., Vasudevan, T.V. and Somasundaran, P., J. Colloid Interf. Sci., 142, (2), pp. 529534 (1990).Google Scholar
12. Fendorf, S. E., Lamble, G. M., Stepleton, M. G., Kelley, M. J. and Sparks, D. L., Environ. Sci. & Tech., 28, (2), pp. 284289 (1994).Google Scholar
13. O'Day, P. A., Brown, G. E. and Parks, G. A., J. Colloid Interf. Sci., 165, pp. 269289 (1994).Google Scholar
14. Gaudin, A. M. and Chang, C. S., Trans. AIME. 193, p. 93 (1952).Google Scholar
15. Clark, S. W. and Cooke, S. R. B., Trans. AIME. 241, pp. 334341 (1968).Google Scholar
16. Mackenzie, J. M. W. and O'Brien, R. T., Trans. AIME. 244, pp. 168172 (1969).Google Scholar
17. Mackenzie, J. M. W., Trans. AIME. 235, pp. 8288 (1966).Google Scholar
18. Heerema, R. H. and Iwasaki, I., Mining Engineering, pp.1510–1515 (1980).Google Scholar
19. Healy, T. W., The Colloid Chemistry of Silica, Bergna, H. E. ed., Advances in Chemistry Series No. 43, American Chemical Society, Washington D. C., Chap. 7, pp. 147164 (1994).Google Scholar
20. Fuerstenau, M. C., Martin, C. C. and Bhappu, R. B., Trans. AIME. Vol.229, pp. 449454 (1964).Google Scholar
21. Fuerstenau, M. C., Lopez,-Valdiveso, A. and Fuerstenau, D.W., Int. J. Mineral Processing, 23, pp. 161170 (1988).Google Scholar
22. Fuerstenau, D. W., Proceedings of the XIX International Mineral Processing Congress, SME, Littleton, Colorado, USA, 3, plenary lecture, pp. 317 (1995).Google Scholar
23. Picheng., Huang and Fuerstenau, D.W., MRS 1996 Spring Metting, no.S.3.2.Google Scholar
24. Duyvesteyn, S., M. S. Thesis, University of California at Berkeley (1994).Google Scholar
25. Picheng, Huang, Ph.D. Thesis at University of California at Berkeley (1996).Google Scholar
26. McBride, M. B., Environmental Chemistry of Soils, Oxford University Press, New York and Oxford. pp. 121127 (1994).Google Scholar