Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-13T00:55:42.714Z Has data issue: false hasContentIssue false

Electronic/Ionic Conductivity and Oxygen Diffusion Coefficient af the Sr-Fe-Co-O System

Published online by Cambridge University Press:  15 February 2011

B. Ma
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, USA
J.-H. Park
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, USA
C. U. Segre
Affiliation:
Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
U. Balachandran
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

Oxides in the Sr-Fe-Co-O system exhibit both electronic and ionic conductivities. Recently, the Sr-Fe-Co-O system attracted great attention because of its potential to be used for oxygen-permeable membranes that can operate without electrodes or external electrical circuitry. Electronic and ionic conductivities of two compositions of the Sr-Fe-Co-O system, named SFC-1 and SFC-2, have been measured at various temperatures. The electronic transference number is much greater than the ionic transference number in SFC-1, whereas the electronic and ionic transference numbers are very similar in SFC-2. At 800°C, the electronic and ionic conductivities are ≈76 and ≈4 S•cm−1, respectively, for SFC-1; whereas, for SFC-2, the electronic and ionic conductivities are ≈10 and ∼1 S•cm−1, respectively. By performing a local fitting to the equation σ • T = Aexp(-Ea / kT), we found that the oxide ion activation energies are 0.92 and 0.37 eV, respectively, for SFC-1 and SFC-2. The oxygen diffusion coefficient of SFC-2 is ≈ 9 x 10−7cm2/sec at 900°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Teraoka, Y., Zhang, H. M., Furukawa, S., and Yamozoe, N., Chem. Lett., 1985, 1743. Google Scholar
2 Teraoka, Y., Nobunaga, T., and Yamazoe, N., Chem. Lett., 1988, 503. Google Scholar
3 Balachandran, U., Morissette, S. L., Picciolo, J. J., Dusek, J. T., Poeppel, R. B., Pei, S., Kleefisch, M. S., Mieville, R. L., Kobylinski, T. P., and Udovich, C. A., Proc. Int. Gas Research Conf., edited by Thompson, H. A., (Government Institutes, Inc., Rockville, MD, 1992), p. 565573.Google Scholar
4 Mazanec, T. J., Cable, T. L., and Frye, J. G. Jr., Solid State Ionics, 111, 53 (1992).Google Scholar
5 Bose, A. C., Stigel, J. G., and Srivastava, R. D., “Gas to Liquids Research Program of the U.S. Department of Energy: Programmatic Overview,” paper presented at the Symp. on Alternative Routes for the Production of Fuels, Am. Chem. Soc. National Meeting, Washington DC, Aug. 21-26, 1994.Google Scholar
6 Balachandran, U., Morissette, S. L., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., Kobylinski, T. P., and Udovich, C. A., Proc. Coal liquefaction and Gas Conversion Contractors Review Conf., edited by Rogers, S.et al., (U.S. Dept. of Energy, Pittsburgh Energy Technology Center, Pittsburgh, PA, September 27-29, 1993), Vol. 1, p. 138160.Google Scholar
7 Cable, T. L., European Patent EP 0438 902 A2 (31 July 1991).Google Scholar
8 Teraoka, Y., Zhang, H. M., Okamoto, K., and Yamazoe, N., Mat. Res. Bull.,23, 51 (1988).Google Scholar
9 Balachandran, U., Dusek, J. T., Sweeney, S. M., Mieville, R. L., Maiya, P. S., Kleefisch, M. S., Pei, S., Kobylinski, T. P., and Bose, A. C., presented at 3rd Int. conf. on Inorganic Membranes, July 10-14, Worcester, MA, USA, 1994.Google Scholar
10 Balachandran, U., Dusek, J. T., Sweeney, S. M., Poeppel, R. B., Mieville, R. L., Maiya, P. S., Kleefisch, M. S., Pei, S., Kobylinski, T. P., Udovich, C. A., and Bose, A. C., Am. Ceram. Soc. Bull., 74, 71 (1995).Google Scholar
11 Pei, S., Kleefisch, M. S., Kobylinski, T. P., Faber, J., Udovich, C. A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R. L., and Poeppel, R. B., Catalysis Lett., 30, 201 (1995).Google Scholar
12 Worrell, W. L., Han, P., and Huang, J., in High Temperature Electrochemical Behavior of Fast Ion and Mixed Conductors, edited by Poulsen, F. W., Bertzen, J. J., Jacobson, T., Skou, E., and Ostergood, M. J. L., (RisØ National Laboratory, 1993), p. 461466.Google Scholar
13 Anderson, H. U., Chen, C. C., Tai, L. W., and Nasrallah, M. M., Proc. 2nd Int. Symp. on Ionic and Mixed Conduction Ceramics, edited by Ramanarayaman, T.A., Worrell, W. L. and Tuller, H. L., (The Electrochem. Soc., 1994), p. 376387.Google Scholar
14 Chen, C. C., Nasrallah, M. M., and Anderson, H. U., submitted to J. Electrochem. Soc.Google Scholar
15 Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fuek, K., Solid State Chem., 73, 179 (1988).Google Scholar
16 See for example, Tuller, H. L. in Nonstoichiometric Oxides, edited by Sorensen, O. T., (Academic Press, New York, 1981), p. 276.Google Scholar
17 Teraoka, Y., Nobunaga, T., Okamoto, K., Miura, N., and Yamazoe, N., Solid State Ionics, 48, 207 (1991).Google Scholar
18 Niscancioglu, K. and Gur, T. M.,Solid State Ionics, 72, 199 (1994).Google Scholar
19 Ma, B., Balachandran, U., Park, J. H., and Segre, C. U., submitted to Solid State Ionics.Google Scholar