Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T13:19:03.575Z Has data issue: false hasContentIssue false

Engineering the morphology and optical properties of InP-based InAsSb/InGaAs nanostructures via Sb exposure and graded growth techniques

Published online by Cambridge University Press:  18 March 2013

W. Lei
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley 6009, WA, Australia
H.H. Tan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
Get access

Abstract

Two growth techniques - antimony exposure and graded growth, were proposed to achieve the control over the morphology and optical properties of self-assembled InAsSb/InGaAs/InP nanostructures. By exposing the surface of InGaAs buffer layer to trimethylantimony precursor before the growth of InAsSb nanostructures, the surface/interface energy in the system is reduced, while the strain energy in the system is enhanced. This leads to a change of island shape from dot structure to wire structure. By using a higher initial mole fraction of trimethylantimony precursor during the graded growth of InAsSb, more Sb can be incorporated into the InAsSb islands despite the same Sb mole fraction averaged over the graded growth. This also results in a shape change from dot to wire structure. As a result of their shape change, photoluminescence from the InAsSb nanostructures shows different polarization characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Qiu, Y. and Uhl, D., Appl. Phys. Lett. 84, 1510(2004).CrossRefGoogle Scholar
Doré, F., Cornet, C., Schliwa, A., Ballestar, A., Even, J., Bertru, N., Dehaese, O., Alghoraibi, I., Folliot, H., Piron, R., Le Corre, A., and Loualiche, S., phys. stat. sol. (c), 3, 524 (2006).CrossRefGoogle Scholar
Lei, W. and Jagadish, C., J. Appl. Phys., 104, 091101 (2008).CrossRefGoogle Scholar
Lei, W., Tan, H. H., and Jagadish, C., J. Phys. D: Appl. Phys., 43, 302001 (2010).CrossRefGoogle Scholar
Lei, W., Tan, H. H., and Jagadish, C., Appl. Phys. Lett., 95, 013108 (2009).CrossRefGoogle Scholar
Lei, W., Tan, H. H., and Jagadish, C., Appl. Phys. Lett., 95, 143124 (2009).CrossRefGoogle Scholar
Lei, W., Tan, H.H., and Jagadish, C., Appl. Phys. Lett., 96, 213102 (2010).CrossRefGoogle Scholar
Ma, W.Q., Nötzel, R., Schönherr, H.P., and Ploog, K.H., Appl. Phys. Lett. 79, 4219 (2001).CrossRefGoogle Scholar
Dubrovskii, V.G., Cirlin, G.E., Musikhin, Y.G., Samsonenko, Y.B., Tonkikh, A.A., Polyakov, N.K., Egorov, V.A., Tsatsul’nikov, A.F., Krizhanovskaya, N.A., Ustinov, V.M., and Werner, P., J. Cryst. Growth 267, 47 (2004).CrossRefGoogle Scholar
Tersoff, J. and Tromp, R.M., Phys. Rev. Lett. 70, 2782 (1993).CrossRefGoogle Scholar
Kakuda, N., Tsukamoto, S., Ishii, A., Fujiwara, K., Ebisuzaki, T., Yamaguchi, K., and Arakawa, Y., Microelectronics J. 38, 620 (2007).CrossRefGoogle Scholar
Guimard, D., Nishioka, M., Tsukamoto, S., and Arakawa, Y., Appl. Phys. Lett. 89, 183124 (2006).CrossRefGoogle Scholar
Aivaliotis, P., Wilson, L.R., Zibik, E.A., Cockburn, J.W., Steer, M. J., and Liu, H.Y., Appl. Phys. Lett. 91, 013503 (2007).CrossRefGoogle Scholar
Kakuda, N., Yoshida, T., and Yamaguchi, K., Appl. Surf. Sci 254, 8050 (2008).CrossRefGoogle Scholar
Voigtlander, B., Zinner, A., Weber, T., and Bonzel, H.P., Phys. Rev. B 51, 7583 (1995).CrossRefGoogle Scholar
Matsuura, T., Miyamoto, T., Kageyama, T., Ohta, M., Matsui, Y., Furuhata, T., and Koyama, F., Jpn. J. Appl. Phys. 43, L605 (2004).CrossRefGoogle Scholar
Portavoce, A., Berbezier, I., and Ronda, A., Phys. Rev. B 69, 155416 (2004).CrossRefGoogle Scholar
Lei, W., Tan, H.H., and Jagadish, C., Appl. Phys. Lett., 99, 193110 (2011).CrossRefGoogle Scholar
Lei, W., Tan, H.H. and Jagadish, C., “Engineering the composition, morphology and optical properties of InAsSb nanostructures via graded growth technique”, submitted to Appl. Phys. Lett. Google Scholar
Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, Academic Press, San Diego, California, USA, 1999, pp.83.Google Scholar