Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-15T15:36:43.841Z Has data issue: false hasContentIssue false

Environmental Life Cycle Inventory of Crystalline Silicon Photovoltaic Module Production

Published online by Cambridge University Press:  26 February 2011

Mariska de Wild-Scholten
Affiliation:
m.dewild@ecn.nl, Energy research Centre of the Netherlands, Solar Energy, Westerduinweg 1, Petten, N/A, 1755 LE, Netherlands, +31 224 56 4736, +31 224 56 8214
Erik A. Alsema
Affiliation:
e.a.alsema@chem.uu.nl, Copernicus Institute, Utrecht University, Department of Science, Technology and Society, Netherlands
Get access

Abstract

Together with 11 European and US photovoltaic companies an extensive effort has been made to collect Life Cycle Inventory (LCI) data that represents the status of production technology for crystalline silicon modules for the year 2004. These data can be used to evaluate the environmental impacts of photovoltaic solar energy systems.

The new data covers all processes from silicon feedstock production via wafer- and cell- to module manufacturing. All commercial wafer technologies are covered, i.e multi- and mono-crystalline wafers as well as ribbon technologies. For monocrystalline silicon wafer production further improvement of the data quality is recommended.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hagedorn, G. and Hellriegel, E. (1992): Umweltrelevante Masseneinträge bei der Herstellung verschiedener Solarzellentypen; eine vergleichende Analyse konventioneller und ausgewählter neuer Verfahren unter Berücksichtigung der Einsatzstoffe und Prozeβketten sowie der Entsorgungs- und Recyclingmöglichkeiten - Endbericht - Teil I: Konventionelle Verfahren; Forschungsstelle für Energiewirtschaft (FfE), München, Germany, 051.24: 220 p;Google Scholar
[2] Jungbluth, N. (2005): Life cycle assessment of crystalline photovoltaics in the swiss ecoinvent database; Progress in Photovoltaics: Research and Applications 13 (5): 429446;Google Scholar
[3] Frankl, P., Corrado, A. and Lombardelli, S. (2004): ECLIPSE Environmental and ecological life cycle inventories for present and future power systems in Europe. Photovoltaic (PV) systems. final report; -200 p.;Google Scholar
[4] Gürzenich, D. and Corradini, R. (2004): Lebenszyklusinventare ausgewählter zukünftiger Stromerzeugungstechniken, Arbeitspapier zu Arbeitspaket 3, Erstellen von Sachbilanzen für die Stromerzeugung mit Photovoltaik; VDI-Gesellschaft Energietechnik, Germany, ISBN 3-931384-50-0;Google Scholar
[5] Rabl, A. and Spadaro, J. (2004): Externalities of Energy: Extension of accounting framework and Policy Applications. Final technical report; 49 p.;Google Scholar
[6] Schmela, M. (2005): Market survey on global cell and module production in 2004. Super sonic solar market; Photon International March: 6682;Google Scholar
[7] Alsema, E.A and de Wild-Scholten, M. J. (2005) Environmental Impact of Crystalline Silicon Photovoltaic Module Production, Proceedings of this Conference;Google Scholar
[8] Knapp, K. and Jester, T. (2001): Empirical investigation of the energy payback time for photovoltaic modules; Solar Energy 71 (3): 165172;Google Scholar
[9] Jester, T.L. (2002): Crystalline silicon manufacturing progress; Progress in Photovoltaics: Research and Applications 10 (2): 99106;Google Scholar
[10] Alsema, E. A., Frankl, P., and Kato, K. (1998), Energy Pay-back Time of Photovoltaic Energy Systems: Present Status and Prospects, 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 6-10 July, 2125–2130;Google Scholar
[11] Rogol, M. (2005) Silicon and the solar sector. Mapping a new world; presentation at the 2nd Solar Silicon Conference, Munich, Germany, 11 April 2005.Google Scholar