Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-19T17:12:28.198Z Has data issue: false hasContentIssue false

Epitaxial Growth and Band Structure Effects at the Si/Ge(111) Interface

Published online by Cambridge University Press:  26 February 2011

J.C. Woicik
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA. 94305
R.S. List
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA. 94305
B.B. Pate
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA. 94305
P. Pianetta
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA. 94305
Get access

Abstract

X-ray absorption fine structure, Auger electron spectroscopy and low energy electron diffraction have been used to study the evolution of the lattice constant and the degree of intermixing of thin (∼5 Å) silicon films grown on the germanium(111) surface by solid phase epitaxy. Our results indicate that as the system is annealed, the silicon intermixes with the germanium at elevated temperatures to form a pseudomorphic Si-Ge alloy with the germanium bulk lattice constant. We further observe a splitting of the ‘white line’ Is absorption edge in crystalling Si, SiGe and dilute (<10% silicon) SiGe. The measured splittings agree with band structure calculations for Si, SiGe, and Ge, respectively, indicating that the density of conduction band states of SiGe behaves as the interpolation between the states of Si and Ge. Qualitatively, our spectra may be interpreted in terms of a one electron picture without invoking many body excitonic effects. The absorption edge of amorphous silicon is also presented and the features of the density of states due to long versus short range order are extracted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1)Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), 2nd ed., p. 774.Google Scholar
2)Hull, R., Bean, J.C., Cereira, F., Fiory, A.T., and Gibson, J.M., Appl. Phys. Lett, 48 (1), (1986).Google Scholar
3)Jackson, S.A. and People, R., in Layered Structures and Epitaxy, Ed. Gibson, J.M., Osbourn, G.C., Tromp, R.M., Proc. MRS Symposia, Vol.56, P. 365 (1986).Google Scholar
4)Stukel, D.J., Phys. Rev. B 3 (10), 3347 (1971).Google Scholar
5)Cerino, J., Stohr, J. and Hower, N., Nucl. Instr. and Meth. 172, 227 (1980).Google Scholar
6)Woicik, J.C., List, R.S., Pate, B.B., and Pianetta, P., Journal De Physique, Colloque C8, supplement au n 12, Tome 47, C8–497 decembre 1986.Google Scholar
7)Teo, Boon-Keng, Lee, P.A., Simons, A.L., Eisenberger, P., and Kincaid, B.M., J. Am. Chem. Soc., 99 (11), 3854 (1977).Google Scholar
8)Maree, P. M. J., Nakagawa, K., Mulders, F. M., Van Der Veen, J. F., and Kavanagh, K. L., Surf. Sci. 191, 305 (1987).Google Scholar
9)Filipponi, A., Fiorini, P., Evangelisti, F., Balerna, A., and Mobilio, S., Journal De Physique, Colloque C8, supplement au n 12, Tome 47, C8–357 decembre 1986.Google Scholar
10)Prokes, S. M., and Spaepen, F., Appl. Phys. Lett. 47 (3), 234 (1985).Google Scholar
11)Harrison, W. A., Microscience 3, 35 (1983).Google Scholar
12)Bethe, H. and Salpeter, E., Quantum Mechanics of One and Two Electron Systems (Springer-Verlag, Berlin, 1957), Secs. 59 and 69.Google Scholar
13)Chelikowsky, J.R. and Cohen, M.L., Phys. Rev. B 14, 556 (1971).Google Scholar