Hostname: page-component-788cddb947-xdx58 Total loading time: 0 Render date: 2024-10-19T17:48:22.642Z Has data issue: false hasContentIssue false

Epitaxial Growth of (100) GaAs on SOS using a Specifically Designed MOCVD System

Published online by Cambridge University Press:  28 February 2011

T. Nishimura
Affiliation:
Optoelectronic and Microwave Devices R&D Laboratory, Mitsubishi Electric Corporation 4-1, Mizuhara. Itami, Hyogo 664, Japan
K. Kadoiwa
Affiliation:
Optoelectronic and Microwave Devices R&D Laboratory, Mitsubishi Electric Corporation 4-1, Mizuhara. Itami, Hyogo 664, Japan
K. Mitsui
Affiliation:
Optoelectronic and Microwave Devices R&D Laboratory, Mitsubishi Electric Corporation 4-1, Mizuhara. Itami, Hyogo 664, Japan
T. Murotani
Affiliation:
Optoelectronic and Microwave Devices R&D Laboratory, Mitsubishi Electric Corporation 4-1, Mizuhara. Itami, Hyogo 664, Japan
Get access

Abstract

High quality (100) single domain GaAs layers are epitaxially grown on slightly misoriented (100) Si-on-(1102) sapphire(SOS) substrates by MOCVD. Epitaxial growth on a spherical SOS substrate reveals that R face (1102) should not be tilted toward C axis [0001], but toward [011] or [011] of Si. A new MOCVD system which has two reactors, one for Si cleaning, the other for GaAs deposition, is effective to obtain mirrorlike smooth surface. The X-ray FWHM of 10µm GaAs was reduced to 65 arcsec by the thermal cycle annealing.

A crack free 15 µm thick GaAs layer with a dislocation density of 3×106cm-2 is obtained by combining the thermal cycle annealing and the strained-layer superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Manasevit, H. M. and Simpson, W. I.: J. Electrochem. Soc. 116 (1969) 1725.Google Scholar
2Sugiura, A., Hosoi, T., Ishibitsu, K. and Kawamura, K.: J. Cryst. Growth 77 (1986) 524.Google Scholar
3Kasai, K., Nakai, K. and Ozeki, M.: J. Appl. Phys. 60 (1986) 1.Google Scholar
4Humphreys, T. P., Miner, C. J., Posthill, J. B., Das, K., Summerville, M. K., Nemanich, R. J., Sukow, C. A. and Parikh, N. R.: Appl. Phys. Lett. 54 (1989) 1687.Google Scholar
5Posthill, J. B., Markunas, R. J., Humphreys, T. P., Nemanich, R. J., Das, K., Parikh, N. R., Ross, R. L. and Miner, C. J.: Appl. Phys. Lett. 55 (1989) 1756.Google Scholar
6Akiyama, M., Kawarada, Y. and Kaminishi, K.: J. Cryst. Growth 68 (1984) 21.Google Scholar
7Nishimura, T., Mizuguchi, K., Hayafuji, N. and Murotani, T.: Jpn. J. Appl. Phys. 26 (1987) L1141.Google Scholar
8Okamoto, H., Watanabe, Y., Kadota, Y. and Ohmachi, Y.: Jpn. J. Appl. Phys. 26 (1987) L1950.Google Scholar
9Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M., Kaminishi, K.: Jpn. J. Appl. Phys. 25 (1986) L789.Google Scholar
10Soga, T., Sakai, S., Takeyasu, M., Umeno, M. and Hattori, S.: Inst. Phys. Conf. Ser. 79 (1985) 133.Google Scholar