Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T12:24:15.114Z Has data issue: false hasContentIssue false

Epitaxial Lanthanide Oxide based Gate Dielectrics

Published online by Cambridge University Press:  31 January 2011

H. Jörg Osten
Affiliation:
osten@mbe.uni-hannover.de, Leibniz University Hannover, Institute of Electronic Materials and Devices, Hannover, Germany
Apurba Laha
Affiliation:
laha@mbe.uni-hannover.de, Leibniz University Hannover, Institute of Electronic Materials and Devices, Hannover, Germany
Andreas Fissel
Affiliation:
fissel@lfi.uni-hannover.de, Leibniz University Hannover, Information Technology Laboratory, Hannover, Germany
Get access

Abstract

Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm CMOS technology. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si(100), crystalline Gd2O3 grows usually as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Layers grown by an optimized MBE process display a sufficiently high-K value to achieve equivalent oxide thickness values < 1 nm, combined with ultra-low leakage current densities, good reliability, and high electrical breakdown voltage. A variety of MOS capacitors and field effect transistors has been fabricated based on these layers. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this differences disappear, indicating that for ultrathin layers direct tunneling becomes dominating. We investigated the effect of post-growth annealings on layer properties. We showed that a standard forming gas anneal can eliminate flatband instabilities and hysteresis as well as reduce leakage currents by saturating dangling bond caused by the bonding mismatch. In addition, we investigated the impact of rapid thermal anneals on structural and electrical properties of crystalline Gd2O3 layers grown on Si with different orientations. The degradation of layers can be significantly reduced by sealing the layer with amorphous silicon prior to annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Norton, D.P. Mat. Sci & Engineer. R 43, 139 (2004).Google Scholar
2 Adachi, G.-Y. and Imanaka, N., Chem. Rev. 98, 1479 (1998).Google Scholar
3 Osten, H.J. Czernohorsky, M., Dargis, R., Laha, A., Kühne, D., Bugiel, E., and Fissel, A., Microelectronic Engineering 84, 2222 (2007).Google Scholar
4 The Oxide Handbook, 2nd Edition, ed. Samsonov, G.V. (IFI/Plenum, New York 1982); G.Y. Adachi and N. Imanaka, Chem. Rev. 98, 1479 (1998).Google Scholar
5 Robertson, J. and Xiong, K., Topics in Appl. Phys., 106, 313 (2007).Google Scholar
6 Foëx, M. and Traverse, J.P. Rev. Int. Hautes Temp. Refract. 3, 429 (1966).Google Scholar
7 Badylevich, M., Shamuilia, S., Afanas'ev, V. V., Stesmans, A., Laha, A., Osten, H. J., and Fissel, A., Appl. Phys. Lett. 90, 252101 (2007).Google Scholar
8 Nolan, M., Grigoleit, S., Sayle, D.C. Parker, St.C. Watson, G.W. Surf. Sci. 576, 217 (2005).Google Scholar
9 Mikhelashvili, I V., Eisenstein, G., and Edelmann, F., J. Appl. Phys. 90, 5447 (2001).Google Scholar
10 Rozhkov, V.A. Trusova, A.Y. and Berezhnoy, I.G. Thin Solid Films 325, 151 (1998).Google Scholar
11 Delugas, P. and Fiorentini, V., Microelectronics Reliability 45, 831 (2005).Google Scholar
12 Seguini, G., Bonera, E., Spiga, S., Scarel, G., and Fanciulli, M., Appl. Phys. Lett., 85, 5316 (2004).Google Scholar
13 Cai, W., E. Stone, S., Pelz, J.P., Edge, L. F. and Schlom, D. G., Appl. Phys. Lett. 91, 042901 (2007).Google Scholar
14 Kwo, J., Hong, M., Kortan, A.R. Queeny, K.L. Chabal, Y.J. Opila, R.L. Müller, D.A., Chu, S.N.G. J. Appl. Phys. 89, 3920 (2001).Google Scholar
15 Fissel, A., Osten, H.J, and Bugiel, E., J. Vac. Sci. Technol. B 21, 1765 (2003).Google Scholar
16 Osten, H. J., Bugiel, E., Czernohorsky, M., Elassar, Z., Kirfel, O., and Fissel, A., Topics in Appl. Phys, 106, 101 (2007).Google Scholar
17 Laha, A., Osten, H.J. and Fissel, A., Appl. Phys. Lett. 89, 143514 (2006).Google Scholar
18 Fissel, A., Elassar, Z., Bugiel, E., Czernohorsky, M., Kirfel, O., and Osten, H. J., J. Appl. Phys. 99, 074105 (2006).Google Scholar
19 Schmeisser, D., Dabrowski, J., Muessig, H.-J., Mater. Sci. Engin. B 109, 30 (2004).Google Scholar
20 Czernohorsky, M., Fissel, A., Bugiel, E., Kirfel, O., and Osten, H.J. Appl. Phys. Lett. 88, 152905 (2006).Google Scholar
21 Laha, A., Osten, H.J. and Fissel, A., Appl. Phys. Lett. 90, 113508 (2007).Google Scholar
22 Lemme, M.C. H.Gottlob, D.B. Echtermeyer, T.J. Kurz, H., Endres, R., Schwalke, U., Czernohorsky, M., and Osten, H.J. J. Vac. Sci. & Technol. B27, 258 (2009).Google Scholar
23 Echtermeyer, T., Gottlob, H.D.B. Wahlbrink, T., Mollenhauer, T., Schmidt, M., Efavi, J.K. Lemme, M.C., and Kurz, H., Solid-State Electronics 51, 617 (2007).Google Scholar
24 Endres, R., Stefanov, Y., and Schwalke, U., Microelectron. Reliab. 47, 528 (2007).Google Scholar
25 Sun, Q.-Q., Laha, A., Ding, S.-J., Zhang, D. W., Osten, H. J., and Fissel, A.: Appl. Phys. Lett. 92, 152908 (2008).Google Scholar
26 Czernohorsky, M., Tetzlaff, D., Bugiel, E., Dargis, R., Osten, H.J. Gottlob, H. D. B., Schmidt, M., Lemme, M. C., and Kurz, H., Semicond. Sci. & Technol. 23, 035010 (2008).Google Scholar
27 Kwo, J., Hong, M., Kortan, A. R., Queeney, K. T., Chabal, Y. J., Mannaerts, J. P., Boone, T., Krajewski, J. J., Sergent, A. M., and Rosamilia, J. M., Appl. Phys. Lett. 77, 130 (2000).Google Scholar
28 Kroemer, H., in Heteroepitaxy on Si, MRS Symposia Proceedings No. 67, edited by Fan, J. C. C. and Poate, J. M. (Materials Research Society, Pittsburgh, PA, 1986), and references therein.Google Scholar
29 Laha, A., Bugiel, E., Wang, J.X. Sun, Q.Q. Fissel, A., and Osten, H.J. Appl. Phys. Lett. 93, 182907 (2008).Google Scholar
30 Osten, H.J. Liu, J.P. Bugiel, E., Müssig, H.J., and Zaumseil, P., Mat Sci. & Engineer. B 87 (2001) 297.Google Scholar
31 Laha, A., Bugiel, E., Dargis, R., Schwendt, D., Badylevich, M., Afanas'ev, V.V., Stesmans, A., Fissel, A., and Osten, H.J. Microelectronic Journal 40 (2009) 633.Google Scholar