Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T07:23:01.475Z Has data issue: false hasContentIssue false

Etching And Hydrogen Incorporation In ScAlMgO4

Published online by Cambridge University Press:  10 February 2011

C. D. Brandlel
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
F. Ren
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA
J. W. Lee
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
J. M. Zavada
Affiliation:
U. S. Army Research Office, Research Triangle Park, NC.
Get access

Abstract

ScAlMgO4 is a potential substrate for GaN epitaxy. We have compared three different plasma chemistries for dry patterning of ScAlMgO4, namely Cl2, F2 or CH4/H2-based. Significant etch rates (>1000Å.min−1) were obtained only with Cl2 (and BCl3), and the rates were directly proportional to both ion energy and ion density in the plasma. Since the etching is ionassisted under all conditions, extremely anisotropic sidewalls are produced on patterned features. Of the wet chemistries investigated at 300K, only HF wet chemical solutions were found to etch ScAlMgO4, although HNO3 can be used at ≤150°C for removal of substrate polishing damage. Hydrogen as 2H has been incorporated into ScAlMgO4 by both ion implantation and by exposure to a plasma at 250°C. In the implanted material diffusion begins at ˜500°C and most of the hydrogen is lost by ≤ 750°C. This thermal stability for hydrogen retention is considerably lower than for other substrate materials for GaN epilayer growth, such as Al2O3 and SiC. There is minimal permeation of 2H from a plasma at 250°C (DH ˜5×10−16 cm2·s−1) in ScAlMgO4, and thus unintentional hydrogen incorporation into GaN overlayers should be minimal at typical growth temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B10, 1237 (1992).10.1116/1.585897Google Scholar
2. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 98, 109 (1989).Google Scholar
3. Nakamura, S., Jap. J. Appl. Phys. 30, L1705 (1991).Google Scholar
4. Kuznia, J., Khan, M.A. and Olson, D.T., J. Appl. Phys. 73, 4700 (1993).Google Scholar
5. Ponce, F.A., Krusor, B.S., Major, J.S., Plano, W.E. and Welch, D.F., Appl. Phys. Lett. 67, 410 (1995).Google Scholar
6. Sitar, Z., Paisley, M.J., Yuan, B., Ruan, J., Choyke, W.J. and Davis, R.F., J. Vac. Sci. Technol. B8, 316 (1990).Google Scholar
7. Liu, H., Frenkel, A.C., Kim, J.G. and Park, R.M., J. Appl. Phys. 74, 6124 (1993).Google Scholar
8. George, T., Jacobson, E., Pike, W.T., Chang-Chien, P., Khan, M.A., Yang, J.W., and Mahajan, S., Appl. Phys. Lett. 68, 337 (1996).10.1063/1.116708Google Scholar
9. Lee, J.W., Pearton, S.J., Abernathy, C.R., Zavada, J.M. and Chai, B., J. Electrochem. Soc. 143, L169 (1996).Google Scholar
10. Hellman, , Brandle, C.D., Schneemeyer, L.F., Wiesmann, D., Brener, I., Siegrist, T., Berkstresser, G.W., Buchannan, D.N.E. and Hartford, E.H., MIJ-NSR 1,1 (1996).Google Scholar
11. Nakamura, , Senoh, M., Nagahama, S., Iwasu, N., Yanada, T., Matsushita, T., Kikogu, I. and Sugimoto, U., Jap. J. Appi. Phys. 35, L317 (1996).Google Scholar
12. Porowski, , Gregory, I. and Jun, J., in High Pressure Chemical Synthesis, ed. Hurczak, J. and Baranowski, B. (Elsevier, Amsterdam, 1989).Google Scholar
13. Amano, H., Kito, M., Hiramtsu, K. and Akasaki, I., Jap. J. Appl. Phys. 28 L2112 (1989).Google Scholar
14. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jap. J. Appl. Phys. 31 1258 (1992).Google Scholar
15. Pearton, S. J., Abernathy, C. R., Wisk, P., Hobson, W. S. and Ren, F., Appl. Phys. Lett 63 1143 (1993).Google Scholar
16. Pearton, S. J., Shul, R. J., Wilson, R. G., Ren, F., Zavada, J. M., Abernathy, C. R., Vartuli, C. B., Lee, J. W., Mileham, J. R. and MacKenzie, J. D., J. Electron Mater. 25 845 (1996).Google Scholar
17. see for example, Wilson, R. G., Solid State Electron. 39 1113 (1996).Google Scholar
18. Wilson, R. G., Chai, B. L. H., Pearton, S. J., Abernathy, C. R., Ren, F. and Zavada, J. M., Appl. Phys. Lett. 69 3848 (1996).Google Scholar
19. Pearton, S. J., Abernathy, C.R., Wisk, P., Hobson, W.S. and Ren, F, Appl. Phys. Lett. 63, 1143 (1993).Google Scholar
20. Pearton, S. J., Nakano, T. and Gottscho, R.A., J. Appl. Phys. 69, 4206 (1991).Google Scholar
21. Wilson, R. G., Pearton, S. J., Abernathy, C. R. and Zavada, J. M., J. Vac. Sci. Technol. A 13 719 (1995).Google Scholar