Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T03:58:42.205Z Has data issue: false hasContentIssue false

Evidence for a Structural Origin of Perpendicular Magnetic Anisotropy in PtxCo1−x Thin Film Alloys

Published online by Cambridge University Press:  15 February 2011

T. A. Tyson
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07102 Los Alamos National Laboratory, Los Alamos NM 87545
S. D. Conradson
Affiliation:
Los Alamos National Laboratory, Los Alamos NM 87545
R. F. C. Farrow
Affiliation:
I. B. M. Research Division, Almaden Research Center, San Jose, CA 95120
B. A. Jones
Affiliation:
I. B. M. Research Division, Almaden Research Center, San Jose, CA 95120
Get access

Abstract

XAFS analysis of the local structure about Pt and Co in PtxCo1−x, for x ˜ 0,7 revealed that the local coordination of Co and Pt is similar to that found in cubic L12 Pt3Co. In the plane of the films, significant Co-Co bonding was found- a feature not present in ordered L12 Pt3Co. The presence of Co-Co bonds, preferentially in-plane, suggest that clustering of Co into “sheets” or “chains” is the source of PMA in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Néel, L., J. Phys. Radium 15, 376 (1954); L. Néel, Compt. Rend. 237, 1486 (1953).Google Scholar
2. Ultrathin Magnetic Structures I, edited by Bland, J. A. C. and Heinrich, B., Springer-Verlag, Berlin, 1994.Google Scholar
3. (a) Dupas, C. et al, J. Appl. Phys. 76, 6558 (1994). (b) P. Bruno and J.-P. Renard, Appl. Phys. A 19, 499 (1989).Google Scholar
4. Gay, J. G. and Richter, R., Phys. Rev. Lett. 56, 2728 (1986).Google Scholar
5. (a) Farrow, R. F. C. et al., Mat. Res. Soc. Symp. Proc. 343, 375 (1994) and references therein. (b) R. F. C. Farrow et al., Mat. Sci. Eng. R 11, 155 (1993).Google Scholar
6. Marinero, E. E. et al., Mat. Res. Soc. Symp. Proc. 313, 677 (1993).Google Scholar
7. (a) Rooney, R. W. et al., Phys. Rev. Lett. 75, 1843 (1995). (b) S. E. Park, P. Y. Jung, and K. B. Kim, J. Appl. Phys. 77, 2641 (1995).Google Scholar
8. (a) Weller, D. et al., Appl. Phys. Lett. 61, p. 2726 (1992). (b) C. -J. Lin and G. L. Gorman, Appl. Phys. Lett. 61, 1600 (1992). (c) D, Weller, H. Brandle and C, Chappert, J. Mag. Mag. Mat. 121, 461 (1993).Google Scholar
9. (a) Farrow, R. F. C. et al., J. Mag. Soc. Jpn., Suppl. S1, 140 (1993). (b) T. Suzuki et al., IEEE Trans. Magn. 28, 2754 (1992).Google Scholar
10. Lee, P. A. et al., Rev. Mod. Phys. 53, 679 (1981).Google Scholar
11. Rehr, J. J., Zabinsky, S. I., and Albers, R. C., Phys. Rev. Lett. 69, 3397 (1992).Google Scholar
12. Tyson, T. A., Conradson, S. D., and Farrow, R. F. C., (unpublished).Google Scholar
13. Weller, D. et al., Mat. Res. Soc. Symp. Proc. 313, 791 (1993).Google Scholar
14. McLaren, J. M. and Victora, R. H., Appl. Phys. Lett. 66, 3377 (1995).Google Scholar
15. Sanchez, J. M. et al., J. Phys. Condens. Matter 1, 491 (1989)Google Scholar
16. Massalski, T. B.: editor-in-chief, Binary Alloy Phase Diagrams, second edition, Vol.2, (ASM International, Ohio, 1993), pp. 1225, 1752.Google Scholar
17. Harris, V. G. et al., Phys. Rev. Lett. 69, 1939 (1992).Google Scholar