Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T01:41:42.642Z Has data issue: false hasContentIssue false

Expanding Thermal Plasma Deposition of Silicon Dioxide-Like Films for Microelectronic Devices

Published online by Cambridge University Press:  01 February 2011

M. Creatore
Affiliation:
Department of Applied Physics, Equilibrium and Transport in Plasmas Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
M.F.A.M. van Hest
Affiliation:
Department of Applied Physics, Equilibrium and Transport in Plasmas Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
J. Benedikt
Affiliation:
Department of Applied Physics, Equilibrium and Transport in Plasmas Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Department of Applied Physics, Equilibrium and Transport in Plasmas Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
Get access

Abstract

In this paper we report on the use of the expanding thermal plasma (ETP) technique for the deposition of carbon-free SiO2 films by means of hexamethyldisiloxane (HMDSO)/oxygen mixtures, at a growth rate of 8-10 nm/s. Information concerning the film chemical properties and refractive index/growth rate have been obtained by means of FTIR measurements and in situ single wavelength ellipsometry, respectively. Because of its geometry, the ETP configuration has proven its suitability for studies concerning the fragmentation paths of the HMDSO molecule and the reactions occurring in the plasma phase. In this framework, very recent results obtained by coupling the SiO2 film-deposition set up with a very sensitive, high spectral resolution- absorption technique, Cavity Ring Down Spectroscopy, are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sano, K., Hayashi, S., Wickramanayaka, S. and Hatanaka, Y., Thin Solid Films 281–282, 397 (1996).10.1016/0040-6090(96)08701-9Google Scholar
[2] Benissad, N., Boisse-Laporte, C., Vallée, C., Granier, A. and Goullet, A., Surf. Coat. Technology, 116–119, 868 (1999).10.1016/S0257-8972(99)00264-9Google Scholar
[3] Creatore, M., Palumbo, F., d'Agostino, R. Pure and Appl. Chem., 74(3), 407 (2002).10.1351/pac200274030407Google Scholar
[4] Magni, D., Deschenaux, Ch., Hollenstein, Ch., Creatore, M., Fayet, P., J. Phys. D: Appl. Phys. 34, 87 (2001)10.1088/0022-3727/34/1/315Google Scholar
[5] Alexander, M. R., Jones, F. R., Short, R. D., Plasmas and Polymers 2, 277 (1997).10.1023/A:1021886217900Google Scholar
[6] Gielen, J.W.A.M., Kessels, W.M.M., vande Sanden, M.C.M., Schram, D.C., J. Appl. Phys. 82, 2643 (1997).10.1063/1.366080Google Scholar
[7] Gielen, J.W.A.M., van de Sanden, M.C.M., Schram, D.C., Appl. Phys. Lett. 69, 152 (1996).10.1063/1.116904Google Scholar
[8] Busch, K. W., Busch, M. A. (Eds.), “Cavity Ring Down Spectroscopy: An Ultratrace-Absorption Measurement Technique” (American Chemical Society, 1999).10.1021/bk-1999-0720Google Scholar
[9] Engeln, R., Letourneur, K.G.Y., Boogaarts, M.G.H., van de Sanden, M.C.M., Schram, D.C., Chem. Phys. Lett. 310, 405 (1999).10.1016/S0009-2614(99)00810-6Google Scholar
[10] Lamendola, R., d'Agostino, R., Pure & Appl. Chem. 70(6), 1203 (1998).10.1351/pac199870061203Google Scholar