Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-24T22:21:37.358Z Has data issue: false hasContentIssue false

Fabrication of Shallow Junctions with Conventional Furnace Equipment by Using Silicon Preimplants

Published online by Cambridge University Press:  10 February 2011

H. Puchner
Affiliation:
LSI Logic Corporation, 3115 Alfred Street, Santa Clara CA-95054, USA Phone: (408)-433-6626, Fax: (408)-986-1486, e-mail:helmut@lsil.com
S. Aronowitz
Affiliation:
LSI Logic Corporation, 3115 Alfred Street, Santa Clara CA-95054, USA
Get access

Abstract

The global scaling down of device dimensions requires process technologies which are able to create ultra-shallow junctions. Besides using ultra-low implant energies for shallow junction creation we present an alternative approach for the creation of MDD (Medium Doped Drain) junctions by using moderately low implant energies. Our approach employs the dopant/point-defect interaction mechanism to retard dopant diffusion as well as dopant de-activation in the tail of the diffusion profiles to achieve suitable shallow junctions. The silicon preimplant allows fabrication of 90nm arsenic, 150nm phosphorus, and 140nm boron metallurgical junctions for a 40keV arsenic, 20keV phosphorus, and 8keV boron implant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Agarwal, A., Eaglesham, D., Gossmann, H. and Simonton, R., IEDM, 467 (1997).Google Scholar
[2] Packan, P. and Plummer, J., Appl. Phys. Lett., 56(18), 1787 (1990).Google Scholar
[3] Hu, S., J. Appl. Phys., 53(3), 1499 (1982)Google Scholar
[4] Tsai, M., Morehead, F. and Baglin, J., J. Appl. Phys., 51(6), 3230 (1980)Google Scholar
[5] Dunham, S., Appl. Phys. Lett., 63(4), 464 (1993).Google Scholar
[6] Clejan, I. and Dunham, S., J. Appl. Phys., 78, 5313 (1995).Google Scholar
[7] Dunham, S., J. Electrochem. Soc., 139, 2628 (1992).Google Scholar
[8] Baccus, B., Wada, T., Shigyo, N., Norishima, M., Nakajima, H., Inou, K., Iinuma, T., Iwai, H., IEEE Trans. ED, 39, 648 (1992).Google Scholar
[9] Fahey, P., Dutton, R., and Moslehi, M., Appl. Phys. Lett., 43, 683 (1983).Google Scholar
[10] PM3, Stewart, J., J. Comp. Chem., 10, 209 (1989).Google Scholar
[11] Fahey, P., Griffin, P. and Plummer, J., Review of Modern Physics, 61(2), 289 (1989).Google Scholar
[12] Stippel, H., Leitner, E., Pichler, Ch., Puchner, H., Strasser, E. and Selberherr, S., Microelectronics Journal, 26 (2/3), 203 (1995).Google Scholar
[13] Bohmayr, W., Burenkov, A., Lorenz, J., Ryssel, H. and Selberherr, S., IEEE Semiconductor Manuf., 8(4), 402 (1995).Google Scholar
[14] Giles, M., 2nd Int.Symp. Process Physics and Modeling in Semiconductor Techn., 273 (1991).Google Scholar
[15] Stolk, P., Gossmann, H., Eaglesham, D., Jacobson, D., Rafferty, C., Gilmer, G., Jaraiz, M., Poate, J., J.Appl.Phys., 81(9), 6031 (1997).Google Scholar