Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T04:35:51.410Z Has data issue: false hasContentIssue false

Formation of Heterogeneous Thickness Modulations During Epitaxial Growth of LPCVD-Si1−xGex/Si Quantum Well Structures

Published online by Cambridge University Press:  25 February 2011

L. Vescan
Affiliation:
ISI and IFF Forschungszentrum Jülich, P.O.B. 1913, D-5170-Jülich, Germany
W. Jäger
Affiliation:
ISI and IFF Forschungszentrum Jülich, P.O.B. 1913, D-5170-Jülich, Germany
C. Dieker
Affiliation:
ISI and IFF Forschungszentrum Jülich, P.O.B. 1913, D-5170-Jülich, Germany
K. Schmidt
Affiliation:
ISI and IFF Forschungszentrum Jülich, P.O.B. 1913, D-5170-Jülich, Germany
A. Hartmann
Affiliation:
ISI and IFF Forschungszentrum Jülich, P.O.B. 1913, D-5170-Jülich, Germany
H. Lüth
Affiliation:
ISI and IFF Forschungszentrum Jülich, P.O.B. 1913, D-5170-Jülich, Germany
Get access

Abstract

Transmission electron microscopy and photoluminescence studies were performed to determine the critical thickness for generation of misfit dislocations in Sil-xGex layers grown by low pressure chemical vapor deposition. Above a certain Ge content the transition from two dimensional to three-dimensional growth occurs before generation of misfit dislocations. For instance, for x ∼0.3 and a substrate temperature around 700°C island formation was observed to start at 1.8 nm. The formation of islands is attributed to the preferential growth of SiGe in areas with less lattice strain. Islands were observed to broaden the exciton photoluminescence of the quantum well structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kasper, E. and Schafler, F., Strained-Layer Superlattices: Materials Science and Technology, edited by Pearsall, T.P. (Academic Press, Boston, 1991) pp. 223310.Google Scholar
2. Bean, J.C. in Advanced Surface Processes for Optoelectronics, edited by Bemasek, S.L., Venkatesan, T. and Temkin, H. (Mat. Res. Soc. Proc. 126, Pittsburgh, PA 1988) pp.111121.Google Scholar
3. Hull, R. and Bean, J.C., in [1], pp. 172.Google Scholar
4. Noble, D.B., Hoyt, J.L., Nix, W., Gibbons, J.F., Laderman, S.S., Turner, J.E., Scott, M.P., Appl. Phys. Lett. 58, 1536 (1991).Google Scholar
5. Tang, H.P., Vescan, L., Dieker, C., Schmidt, K., Lüth, H. and Li, H.D., submitted for publ. to J. Cryst., Growth.Google Scholar
6. Tang, H.P., Vescan, L., Lüth, H., J. Cryst. Growth 116, 1 (1992).Google Scholar
7. Matthews, J.W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
8. Yao, J.Y., Andersson, T.G., Dunlop, G.L., J. Appl. Phys. 69, 2224 (1991).Google Scholar
9. Kuan, T.S. and Iyer, S.S., Appl. Phys. Lett. 59, 2242 (1991).Google Scholar
10. Vescan, L., Hartmann, A., Schmidt, K., Dieker, C., Lüth, H., and Jäger, W., to be publ. in Appl. Phys. Lett. 60 (18) (1992).Google Scholar
11. Frank, F.C. and Merwe, J.H. van der, Proc. Roy. Soc. A200, 125 (1949)Google Scholar
12. Berger, P., Chang, K., Bhattacharya, P., Singh, J., Appl. Phys. Lett. 53, 684 (1988).Google Scholar
13. Jesser, W.A. and Merwe, J.H. van der, Phil. Mag. 24, 295 (1971).Google Scholar