Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-14T02:22:11.406Z Has data issue: false hasContentIssue false

Free Volume Changes in Bulk Amorphous Alloys During Structural Relaxation and in the Supercooled Liquid State

Published online by Cambridge University Press:  10 February 2011

C. Nagel
Affiliation:
Universität Kiel, Technische Fakultät, Lehrstuhl füfir Materialverbunde, Kaiserstr. 2, D-24143 Kiel, Germany
K. Rätzke
Affiliation:
Universität Kiel, Technische Fakultät, Lehrstuhl füfir Materialverbunde, Kaiserstr. 2, D-24143 Kiel, Germany
E. Schmidtke
Affiliation:
Universität Kiel, Technische Fakultät, Lehrstuhl füfir Materialverbunde, Kaiserstr. 2, D-24143 Kiel, Germany
F. Faupel
Affiliation:
Universität Kiel, Technische Fakultät, Lehrstuhl füfir Materialverbunde, Kaiserstr. 2, D-24143 Kiel, Germany
Get access

Abstract

Volume changes in Zr46.7Ti8.3Cu7.5Ni10Be27.5 and Zr 65Al7.5Ni10Cu17.5 bulk metallic glasses have been observed by positron annihilation and density measurements. At low cooling rates excess volume of the order of 0.1 % is quenched in both glasses. Isothermal relaxation kinetics below the glass transition temperature obey a Kohlrausch law with exponents of β≈(0.3 ± 0.1). Structural relaxation is not accompanied by embrittlement, as indicated by simple mechanical tests. The outer surface plays a crucial role in annealing of excess volume, which can be restored by annealing above Tg. The observed free volume changes are at variance with the behavior of a perfectly strong glass. The temperature dependence of the positron lifetime is discussed in terms of thermal detrapping from shallow traps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, T., Inoue, A., Masumoto, T., Mater. Trans. JIM 32, 1005 (1991).Google Scholar
2. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
3. http://www.liquidmetalgolf.com/.Google Scholar
4. Cahn, R.W., in Materials Science and Technology Vol.9, edited by Haasen, P., Kramer, P., Cahn, R.W. (VCH Verlag, Weinheim, 1991), chap. 9.Google Scholar
5. Gerling, R., Schimansky, F. P., Wagner, R., Mater. Sci. Engng. 97, 515 (1988).Google Scholar
6. Triftshäuser, W. and Kögel, G., in: NATO ASI Series E 118, edited by E. Lüischer and G. Fritsch, 218 (1987).Google Scholar
7. Angell, C. A., Science 267, 1924 (1995).Google Scholar
8. Nagel, C., Rätzke, K., Schmidtke, E., Wolff, J., Geyer, U., Faupel, F., Phys. Rev. B. 57, 10224, (1998).Google Scholar
9. Nagel, C., Rätzke, K., Schmidtke, E., Faupel, F., Ulfert, W., submitted to Phys. Rev. B. Brief Reports (1998).Google Scholar
10. Kirkegaard, P., Pedersen, N.J., Eldrup, M., Report of Risø Nat. Lab. (Risø-M-2740) (1989).Google Scholar
11. Chen, H. S. and Chuang, S. Y., Phys. Stat. Sol. (a), 25, 581 (1974).Google Scholar
12. Egami, T., Ann. N. Y. Acad. Sci. 371, 238 (1981).Google Scholar
13. Spaepen, F., Physics of Defects, Les Houches Lectures XXXV, edited by Balian, R., Kléman, M., Poirer, J.P. (North Holland, Amsterdam, 1981), p. 133.Google Scholar
14. Ulfert, W. and Kronmüller, H., J. Phys. C 8, 617 (1996).Google Scholar
15. Fielitz, P., Macht, M.P., Naundorf, V., Frohberg, G., J. non-cryst. sol. (1999).Google Scholar
16. Ehmler, H., Heesemann, A., Rätzke, K., Faupel, F., Geyer, U., Phys. Rev. Lett. 80, 4919 (1998).Google Scholar
17. Jäckle, J., Rep. Prog. Phys. 49, 171 (1986).Google Scholar
18. Dittmar, R., Würschum, R., Ulfert, W., Kronmüller, H., Schaefer, H.-E., Solid State Communications 105, 221 (1998).Google Scholar
19. West, R. N., in Positrons in Solids, edited by Hautojärvi, P., (Springer Verlag, Berlin, 1979), pp. 89144.Google Scholar