Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-21T17:54:25.035Z Has data issue: false hasContentIssue false

From Conducting Polymers to Electroactive Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Pedro Gómez-Romero
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain. E-mail: pedro.gomez@icmab.es
Monica Lira-Cantú
Affiliation:
Materials Science Institute of Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain. E-mail: pedro.gomez@icmab.es
Get access

Abstract

Electron or hole conductivity in conjugated polymers provided their initial thrust, but conductive polymers also display interesting electrochemical properties which constitute the base for their application in different types of electro-ionic devices. A further step in the development of functional materials based on conductive polymers is provided by the design of hybrid materials. In hybrid organic-inorganic materials based on conductive polymers, the electroactivity of molecular doping species or other inorganic components is added to that of the polymers themselves, leading to a whole new spectrum of hybrid materials that allow for the harnessing and control of the electrochemical properties of molecular species and put them to work in the development of all sorts of functional materials and devices, from sensors or catalysts to rechargeable lithium batteries, supercapacitors or photoelectrochemical devices. In this chapter we present several examples of this type of functional materials, their synthesis, properties and applications. We will present a general overview of this field and will discuss in some detail the design of insertion electrodes based on conducting polymers and hybrid organicinorganic materials based on them, analyzing their peculiar ion-inserting mechanisms and their possible application in energy storage devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shirakawa, H.; MacDiarmid, A. G.; Heeger, A. J. J. Chem. Soc. Chem. Com. 1977, 78.Google Scholar
2. Armand, M., Sanchez, J. Y. Gauthier, M., Choquette, Y., In Electrochemistry of Novel Materials, edited by Lipkowski, J., Ross, P. N., (Willey-VCH Publishers, 1994) pp. 65110.Google Scholar
3. Furukawa, N.; Nishio, K. In Applications of Electroactive Polymers; edited by B., Scrosati (Chapman & Hall: United Kingdom, 1993).Google Scholar
4. Novak, P.; Mueller, K.; Santhanam K.S., V.; Haas, O. Chem. Rev. 1997, 97, 207281.Google Scholar
5. Miller, J. S. Adv. Mater. 1993, 5, 587589.Google Scholar
6. Miller, J. S. Adv. Mater 1993, 5, 671.Google Scholar
7. Ruiz-Hitzky, E. Adv. Mater. 1993, 5, 334–40.Google Scholar
8. Judeinstein, P.; Sanchez, C. J. Mater. Chem. 1996, 6(4), 511–25.Google Scholar
9. Ruiz-Hitzky, E.; Aranda, P. An. Quim. Int. Ed. 1997, 93, 197212.Google Scholar
10. Novak, B. M. Adv. Mater. 1993, 5, 422–33.Google Scholar
11. Gomez-Romero, , P. Adv. Mater. 2001, 13, 163.Google Scholar
12. Gomez-Romero, P.; Casan-Pastor, N.; Lira-Cantu, M. Solid St. Ionics 1997, 101-103, 875880.Google Scholar
13. Lira-Cantu, M.; Gomez-Romero, P. Chem. Mater. 1998, 10, 698704.Google Scholar
14. Gómez-Romero, P. Adv. Mater. 2001, 13, 163174.Google Scholar
15. Torres-Gomez, G.; Gomez-Romero, P. Synth. Met. 1998, 98, 95102.Google Scholar
16. Torres-Gomez, G.; West, K.; Skaarup, S.; Gomez-Romero, P. J. Electrochem. Soc. 2000, 147, 25132516.Google Scholar
17. Gomez-Romero, P.; Torres-Gomez, G. Adv. Mater., 2000, 12.Google Scholar
18. Torres-Gómez, G. T.-R. E., and Gómez-Romero, P. Chem. Mater., 2001, 13, 36933697.Google Scholar
19. Livage, J. Chem. Mater. 1991, 3, 578593.Google Scholar
20. Kanatzidis, M. G.; Hubbard, M.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.; Kannewurf, C. R. Synth. Met. 1989, 28, C89–C95.Google Scholar
21. Wu, C. G.; DeGroot, D. C.; Marcy, H. O.; Schindler, J. L.; Kannewurf, C. R.; Liu, Y. J.; Hirpo, W.; Kanatzidis, M. G. Chem. Mater. 1996, 8, 19922004.Google Scholar
22. Lira-Cantu, M.; Gomez-Romero, P. J.Solid St. Chem. 1999, 147, 601608.Google Scholar
23. Gomez-Romero, P.; Lira-Cantu, M. Adv. Mater. 1997, 9, 144147.Google Scholar
24. Lira-Cantu, M.; Gomez-Romero, P. J.New Mater. Electrochem. Syst. 1999, 2, 141144.Google Scholar
25. Lira-Cantu, M.; Gomez-Romero, P. J.Electrochem. Soc. 1999, 146, 20292033.Google Scholar
26. Leroux, F.; Koene, B. E.; Nazar, F. L. J. Electrochem. Soc. 1996, 143, L181183.Google Scholar
27. Leroux, F.; Goward, G.; Power, W. P.; Nazar, L. F. J. Electrochem. Soc. 1997, 144, 38863895.Google Scholar
28. Lira-Cantu, M.; Gomez-Romero, P. In Recent Res. Dev. Phys. Chem., edited by Pandalai, E.G. (Transworld Research Network, 1997) 1, 379401.Google Scholar
29. Kuwabata, S.; Idzu, T.; Martin, C. R.; Yoneyama, H. J. Electrochem. Soc. 1998, 145, 27072710.Google Scholar