Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T06:50:51.081Z Has data issue: false hasContentIssue false

Gallium Nitride Thick Films Grown by Hydride Vapor Phase Epitaxy

Published online by Cambridge University Press:  15 February 2011

R. J. Molnar
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173-9108
P. Maki
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173-9108
R. Aggarwal
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173-9108
Z. L. Liau
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173-9108
E. R. Brown
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173-9108
I. Melngailis
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA 02173-9108
W. Götz
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
L. T. Romano
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Gallium nitride (GaN) thick films (to 150 μm) have been deposited by hydride vapor phase epitaxy (HVPE). These films are unintentionally doped n-type (n = 1–2 × 1017 cm−3 at 300 K) and exhibit structural and electronic properties which are comparable with the best reported for GaN films grown by organometallic vapor phase epitaxy. Additionally, these properties are found to be uniform over 2-in diameter films grown on sapphire substrates. The use of either a GaCl or ZnO surface pretreatment has been found to substantially enhance the nucleation density, resulting in improved surface morphology and film properties, even though it appears that the ZnO film is thermochemically desorbed early on in the growth. Dislocation densities as low as ˜5×107 cm−2 have been attained for films 40 μtm thick. Homoepitaxial overgrowths both by electron-cyclotron-resonance plasma enhanced molecular beam epitaxy and OMVPE proceed in a straightforward manner, essentially replicating the defect structure of the HVPE GaN film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., Amano, H., Kito, M. and Hiramatsu, K., J. Lumin. 48&49, 666 (1991).Google Scholar
2. Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
3. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
4. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
5. Maki, P., Molnar, R.J., Aggarwal, R.L., Liau, Z.L. and Melngailis, I., Mater. Res. Soc. Symp. Proc. 395, 919 (1996).Google Scholar
6. Molnar, R.J., Nichols, K.B., Maki, P., Brown, E.R. and Melngailis, I., Mater. Res. Soc. Symp. Proc. 378, 479 (1995).Google Scholar
7. Molnar, R.J., Aggarwal, R., Liau, Z.L., Brown, E. R., Melngailis, I., Götz, W., Romano, L.T. and Johnson, N.M., Mater. Res. Soc. Symp. Proc. 395, 189 (1996).Google Scholar
8. Naniwae, K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K. and Akasaki, I., J. Cryst. Growth 99, 381 (1990).Google Scholar
9. Detchprohm, T., Hiramatsu, K., Amano, H. and Akasaki, I., Appl. Phys. Lett. 61, 2688 (1992).Google Scholar
10. Romano, L.T., Krusor, B.S., Anderson, G.A., Bour, D.P., Molnar, R.J. and Maki, P., this volume.Google Scholar
11. Götz, W., Johnson, N.M., Street, R.A., Amano, H. and Akasaki, I., Mater. Res. Soc. Symp. Proc. 378, 491 (1995)Google Scholar
12. Molnar, R.J., Lei, T. and Moustakas, T.D., Appl. Phys. Lett. 62, 72 (1993).Google Scholar