Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-07T07:52:27.947Z Has data issue: false hasContentIssue false

Grain Growth in Vapor Deposited Aluminium Alloys

Published online by Cambridge University Press:  26 February 2011

Uwe Köster
Affiliation:
Dept. Chem. Eng., University of Dortmund, D-4600 Dortmund 50, F.R., Germany
Paul S. Ho
Affiliation:
IBM, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
Get access

Abstract

In a number of vapor deposited aluminium alloys grain growth has been investigated systematically by means of quantitative electron microscopy and found to proceed not by grain boundary migration, but by grain coalescence. Parameters influencing the observed mode of grain growth will be discussed with respect to the formation of microstructures with optimal resistance to electromigration, i.e. microstructures with large grain size, high homogeneity in the grain size distribution as well as a strong texture.

Analyses of grain size distribution after annealing indicate a strong retardation in grain growth by the solute in all aluminium alloys except Al(Cu). Relative large grain sizes and very small lognormal standard deviations have been observed in Al-l%Cu as well as ternary Al(Cu,Hf) thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ames, I., d'Heurle, F.M., Horstman, R., IBM J. Res. Develop. 14, 461 (1970)CrossRefGoogle Scholar
2. d'Heurle, F.M., Met. Trans. 2, 683 (1971)Google Scholar
3. d'Heurle, F.M., Ho, P.S., in: Thin Films - Interdiffusion and Reactions, ed. Poate, J.M. et al. (Wiley, New York 1978), p.243ff.Google Scholar
4. Attardo, M.J., Rutledge, R., Jack, R.C., J. Appl. Phys. 42, 4343 (1971)Google Scholar
5. Agarwala, B.N., Patnaik, B., Schnitzel, R., J. Appl. Phys. 43, 1487 (1972)Google Scholar
6. Agarwala, B.N., Berenbaum, L., Peressini, P., J. Electr. Mat. 3, 137 (1974)Google Scholar
7. Vavra, I., Luby, S., Czech. J. Phys. B30, 175 (1980)CrossRefGoogle Scholar
8. Attardo, M.J., Rosenberg, R., J. Appl. Phys. 41, 2381 (1970)CrossRefGoogle Scholar
9. Vaidya, S., Sinha, A.K., Thin Solid Films 75, 253 (1981)Google Scholar
10. Merchant, P., Cass, T., Proc. 22nd Annual Conference on Reliability Physics, 1984, p.259ff.Google Scholar
11. Gangulee, A., d'Heurle, F.M., Thin Solid Films 16, 227 (1973)Google Scholar
12. Gordon, P., Vandermeer, R.A., Trans. Met. Soc. AIME 224, 917 (1962)Google Scholar
13. Koster, U., Hornbogen, E., Z. Metallkde. 59, 792 (1968)Google Scholar
14. Ahlborn, H., Hornbogen, E., Koster, U., J. Mat. Sci. 4 944 (1969)Google Scholar
15. Ferraglio, P.L., D'Antonio, C., Thin Solid Films 1., 499 (1967/8)Google Scholar
16. Hasiguti, R.R., J. Phys. Soc. Jap. 20, 625 (1965)Google Scholar