Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-27T02:41:45.994Z Has data issue: false hasContentIssue false

Grain-Size Effects on Diffuse Phase Transitions of Batio3 Ceramics Obtained by Alkoxide Precursors

Published online by Cambridge University Press:  21 February 2011

R. P. S. M. Lobo
Affiliation:
Departamentos de Fisica e de Quimica, ICEx, UFMG, C. P. 702, CEP 30161-970 Belo Horizonte, MG, Brazil
R. L. Moreira
Affiliation:
Departamentos de Fisica e de Quimica, ICEx, UFMG, C. P. 702, CEP 30161-970 Belo Horizonte, MG, Brazil
N. D. S. Mohallem
Affiliation:
Departamentos de Fisica e de Quimica, ICEx, UFMG, C. P. 702, CEP 30161-970 Belo Horizonte, MG, Brazil
Get access

Abstract

Barium titanate ceramics have been obtained by sol-gel methods. The dielectric investigations of these materials revealed the existence of diffuse ferroelectric transitions. By using a phenomenological model, we could demonstrate the existence of a simple relationship between the diffuse character of the transition and the sample grain-size. This effect has been attributed to interactions between charged defects on the grain surfaces and the spontaneous polarization of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kinoshita, K. and Yamaji, A., J. Appl. Phys. 47, 371 (1976).Google Scholar
2 Bell, A. J., Moulson, A. J., and Cross, L. E., Ferroelectrics 54, 147 (1984).Google Scholar
3 Kanata, T., Yoshikawa, T., and Kubota, K., Sol. State Comm. 62, 765 (1987).Google Scholar
4 Arlt, G., Ferroelectrics 104, 217 (1990).Google Scholar
5 Arlt, G., Hennings, D., and de With, G., J. Appl. Phys. 58 1619 (1985).Google Scholar
6 Mohallem, N. D. S. and Aegerter, M. A., Mat. Res. Soc. Symp. Proc. 121, 515 (1988).Google Scholar
7 Zhixiong, C., Fangqiao, Z., Meidong, L., Gouan, W., and Xiangsheng, P., Ferroelectrics 123, 61 (1991).Google Scholar
8 Lobo, R. P. S. M., Mohallem, N. D. S., and Moreira, R. L., J. Am. Ceram. Soc, in press (1994).Google Scholar
9 Smolensky, G. A., J. Phys. Soc. Japan 28 Suppl. 26 (1970).Google Scholar
10 Clarke, R. and Burfoot, J. C., Ferroelectrics 8, 505 (1974).Google Scholar
11 Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 22, 863 (1979).Google Scholar
12 Isupov, V. A., Ferroelectrics 90, 113 (1989).Google Scholar
13 Kirillov, V. V. and Isupov, V. A., Ferroelectrics 5, 3 (1973).Google Scholar
14 Kuwabara, M., Goda, K., and Oshima, K., Phys. Rev. B 42, 10012 (1990).Google Scholar
15 Diamond, H., J. Appl. Phys. 32, 909 (1961).Google Scholar
16 Moreira, R. L. and Lobo, R. P. S. M., J. Phys. Soc. Jpn. 61, 1992 (1992).Google Scholar
17 Lobo, R. P. S. M., Moreira, R. L., and Mohallem, N. D. S., Ferroelectrics 133, 169 (1992).Google Scholar
18 Grindlay, J., An Introduction to the Phenomenological Theory of Ferroelectricity (Pergamon Press, Oxford, 1970), p. 198.Google Scholar
19 Johnson, C. J., Appl. Phys. Lett. 7, 221 (1965).Google Scholar