Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T22:18:16.387Z Has data issue: false hasContentIssue false

Graphene Nanotubule Cold Field Emission Electron Sources

Published online by Cambridge University Press:  22 February 2011

B. H. Fishbine
Affiliation:
National Research Council Associate
C. J. Miglionico
Affiliation:
Phillips Laboratory, Kirtland AFB NM 87117
K. E. Hackett
Affiliation:
Phillips Laboratory, Kirtland AFB NM 87117
K. J. Hendricks
Affiliation:
Phillips Laboratory, Kirtland AFB NM 87117
Get access

Abstract

Buckytubes are considered for high current density cold field emitter array electron sources. They may provide more stable, higher-brightness emission than existing cold field emitter arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kirkpatrick, D. A., private communication, 1993.Google Scholar
2. lijima, S., Mad. Sci. Eng. B 19, 172 (1993).Google Scholar
3. Atlan, D., Gardet, G., Binh, V. T., Garcia, N., Saenz, J. J., Ultramicroscopy 42–44, 154 (1992).Google Scholar
4. Horch, S. and Morin, R., J. Appl. Phys. 74, 3652 (1993).Google Scholar
5. Utsumi, T., IEEE Trans. Electron Devices 38, 2276 (1991).Google Scholar
6. Hamada, N., Sawada, S.-I., Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
7. Saito, R., Dresselhaus, G., Dresselhaus, M. S., J. Appl. Phys. 73, 494 (1993).Google Scholar
8. Jishi, R. A., Dresselhaus, M. S., Dresselhaus, G., Phys. Rev. B 48, 11385 (1993).Google Scholar
9. Pang, L. S. K., Saxby, J. D., Chatfield, S. P., J. Phys. Chem. 97, 6941 (1993).Google Scholar
10. Ebbesen, T. W. and Ajayan, P. M., Nature 358, 220 (1992).Google Scholar
11. Song, S. N., Wang, X. K., Chang, R. P. H., Ketterson, J. B., Phys. Rev. Lett. 72, 697 (1994).Google Scholar
12. Bursill, L. A., Stadelmann, P. A., Peng, J. L., Prawer, S., Phys. Rev. B 49, 2882 (1994).Google Scholar
13. Ajayan, P. M., lijima, S., Ichihashi, T., Phys. Rev. B 47, 6859 (1993).Google Scholar
14. Kuzuo, R., Terauchi, M., Tanaka, M., Jpn. J. Appl. Phys. 31, L1484 (1992).Google Scholar
15. Dravid, V. P., Lin, X., Wang, Y., Wang, X. K., Yee, A., Ketterson, J. B., Chang, R. P. H., Science 259, 1601 (1993).Google Scholar
16. Lin, X., Wang, X. K., Dravid, V. P., Chang, R. P. H., Ketterson, J. B., Appl. Phys. Lett. 64, 181 (1994).Google Scholar
17. Olk, C. H. and Heremans, J. P., J. Mater. Res. 9, 259 (1994).Google Scholar
18. Langer, L. et al. , to appear in J. Mater. Res.Google Scholar
19. Ge, M. and Sattler, K., Science 260, 515 (1993).Google Scholar
20. Ge, M., private communication, 1993.Google Scholar
21. Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S., Chan, B., Nature 364, 514 (1993).Google Scholar
22. Kosakovskaya, Z. Ya., Chernozatonskii, L. A., Fedorov, E. A., JETP Lett. 56, 26 (1992).Google Scholar
23. Chemozatonskii, L. A., Fedorov, E. A., Kosakovskaya, Z. Ja., Panov, V. I., JETP Lett. 57, 35 (1993).Google Scholar
24. Chernozatonskii, L. A., private communication, 1994.Google Scholar