Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-19T15:33:37.475Z Has data issue: false hasContentIssue false

Growth and Characterization of CuInSe2 Epitaxial Films for Device Applications

Published online by Cambridge University Press:  10 February 2011

S. Niki
Affiliation:
Optoelectronics Division, Electrotechnical Laboratory, MITI, 1- 1-4 Umezono, Tsukuba, Ibaraki 305, Japan (phone) 81-298-58-5610 (FAX) 81-298-58-5615, s.niki@etlrips.etl.go.jp
T. Kurafuji
Affiliation:
Optoelectronics Division, Electrotechnical Laboratory, MITI, 1- 1-4 Umezono, Tsukuba, Ibaraki 305, Japan (phone) 81-298-58-5610 (FAX) 81-298-58-5615, s.niki@etlrips.etl.go.jp
P. J. Fons
Affiliation:
Optoelectronics Division, Electrotechnical Laboratory, MITI, 1- 1-4 Umezono, Tsukuba, Ibaraki 305, Japan (phone) 81-298-58-5610 (FAX) 81-298-58-5615, s.niki@etlrips.etl.go.jp
I. Kim
Affiliation:
Optoelectronics Division, Electrotechnical Laboratory, MITI, 1- 1-4 Umezono, Tsukuba, Ibaraki 305, Japan (phone) 81-298-58-5610 (FAX) 81-298-58-5615, s.niki@etlrips.etl.go.jp
O. Hellman
Affiliation:
Optoelectronics Division, Electrotechnical Laboratory, MITI, 1- 1-4 Umezono, Tsukuba, Ibaraki 305, Japan (phone) 81-298-58-5610 (FAX) 81-298-58-5615, s.niki@etlrips.etl.go.jp
A. Yamada
Affiliation:
Optoelectronics Division, Electrotechnical Laboratory, MITI, 1- 1-4 Umezono, Tsukuba, Ibaraki 305, Japan (phone) 81-298-58-5610 (FAX) 81-298-58-5615, s.niki@etlrips.etl.go.jp
Get access

Abstract

CuInSe2 (CIS) epitaxial layers have been grown on both GaAs (001) and In0.29Ga0.71 As pseudo lattice-matched substrates by molecular beam epitaxy, and characterized for device applications. Despite a large lattice mismatch of Δa/a˜2.2%, epitaxial growth of CuInSe2 has been demonstrated on GaAs (001) showing their film properties strongly dependent on the Cu/In ratio. In-rich films had a large number of twins on {112} planes, and were found to be heavily compensated. On the other hand, Cu-rich films showed distinct photoluminescence emissions indicating significantly higher film quality in comparison with In-rich films. Two dimensional reciprocal x-ray intensity area mapping and cross-sectional transmission electron microscopy showed the formation of an interfacial layer in the vicinity of the CuInSe2/GaAs interface resulting from the strain-induced interdiffusion between CuInSe2 and GaAs. Reduction in lattice mismatch to Δa/a˜0.2% by using In0.29Ga0.71As pseudo lattice-matched substrates made possible the growth of high quality CuInSe2 with predominant free exciton emissions in their photoluminescence spectra and with residual defect densities of as low as p˜l×1017cm-3 implying the growth of device quality CuInSe2 epitaxial films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Contreras, M. A., Tuttle, J., Gabor, A., Tennant, A., Ramanathan, K., Asher, S., Franz, A., Keane, J., Wang, L., Scofield, J., and Noufi, R., Proc. 1 st World Conf. Photovoltaic Energy Conversion, 68 (1994).Google Scholar
[2] Knapp, K. E., American Institute of Physics, Conference Proceedings 306, 83 (1993).Google Scholar
[3] Igarashi, O., J. Cryst. Growth 130, 343 (1993).Google Scholar
[4] Blunier, S., Tiwari, A. N., Kessler, K., Zogg, H., Dobeli, M., and Fizmoser, M., Proc. 1st World Conf. Photovoltaic Energy Conversion, 242 (1994).Google Scholar
[5] Tiwari, A. N., Blunier, S., Fizmoser, M., Zogg, H., Schmid, D., and Schock, H. W., Appl. Phys. Lett. 65, 3347 (1994).Google Scholar
[6] Niki, S., Shibata, H., Fons, P. J., Yamada, A., Obara, A., Makita, Y., Kurafuji, T., Chichibu, S., and Nakanishi, H., Appl. Phys. Lett. 67, 1289 (1995).Google Scholar
[7] For example, Fitzgerald, E. A., Xie, Y. -H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mii, Y. -J., and Beir, B. E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
[8] Chang, J. C. P., Chen, J. J., Fernandez, J. M., Wieder, H. H., and Kavanagh, K. L.,, Appl. Phys. Lett. 60, 1129 (1992).Google Scholar
[9] Chang, J. C. P., Chin, T. P., Tu, C. W., and Kavanagh, K. L., Appl. Phys. Lett. 63, 500 (1993).Google Scholar
[10] Igarashi, O., J. Crystal Growth 130, 343 (1993).Google Scholar
[11] Hara, K., Shinozawa, T., Yoshino, J. and Kukimoto, H., J. Crystal Growth 93, 771 (1988).Google Scholar
[12] Fons, P. J., Niki, S., Yamada, A., Nishitani, M., Wada, T., and Kurafuji, T., to be published in the proceedings of Materials Research Society Spring Meeting, San Francisco, Apr. 8–12 (1996).Google Scholar
[13] Okada, Y., Shioda, R., Niki, S., Yamada, A., Oyanagi, H., and Makita, Y., Extended Abstract of the 1994 International Conference on Solid State Devices and Materials, 208 (1994).Google Scholar
[14] Fons, P. J., Niki, S., Yamada, A., and Hellman, O., to be published in the proceedings of Materials Research Society Fall Meeting, Boston, Nov. 27 - Dec. 1 (1995).Google Scholar
[15] Niki, S., Makita, Y., Yamada, A., Obara, A., Misawa, S., Igarashi, O., Aoki, K. and Kutsuwada, N., Jap. J. Appl. Phys. 33, L500 (1994).Google Scholar
[16] Niki, S., Shibata, H., Fons, P. J., Yamada, A., Obara, A., Makita, Y., Kurafuji, T., Chichibu, S., and Nakanishi, H., Appl. Phys. Lett. 67, 1289 (1995).Google Scholar
[17] Fons, P. J., unpublished.Google Scholar
[18] Okada, Y., Fons, P. J., Shioda, R., Oyanagi, H., Niki, S., Yamada, A., and Makita, Y., Proceedings of the 10th International Conference on Ternary and Multinary Compounds, Stuttgart, Germany, Sept. 1995. (in press)Google Scholar
[19] Niki, S., Makita, Y., Yamada, A., Shibata, H., Fons, P. J., Obara, A., Kurafuji, T., Chichibu, S., and Nakanishi, H., Proceedings of 1 st World Conference on Photovoltaic Energy Conversion, 132 (1995).Google Scholar