Hostname: page-component-788cddb947-55tpx Total loading time: 0 Render date: 2024-10-19T20:27:09.515Z Has data issue: false hasContentIssue false

The Growth of InAsSb/InAs/InPSb/InAs Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratory, Albuquerque, NM, Albuquerque, NM 87185-0601
J. D. Phillips
Affiliation:
Sandia National Laboratory, Albuquerque, NM, Albuquerque, NM 87185-0601
S. R. Kurtz
Affiliation:
Sandia National Laboratory, Albuquerque, NM, Albuquerque, NM 87185-0601
Get access

Abstract

We report on the metal-organic chemical vapor deposition (MOCVD) of strained layer superlattices (SLSs) of InAsSb/InAs/InPSb/InAs as well as mid-infrared optically pumped lasers grown using a high speed rotating disk reactor (RDR). The devices contain AlAsSb cladding layers and strained, type I, InAsSb/InAs/InPSb/InAs strained layer superlattice (SLS) active regions. By changing the layer thickness and composition of the SLS, we have prepared structures with low temperature (<20K) photoluminescence wavelengths ranging from 3.4 to 4.8 µm. The optical properties of the InAsSb/InPSb superlattices revealed an anomalous low energy transition that can be assigned to an antimony-rich, interfacial layer in the superlattice. This low energy transition can be eliminated by introducing a 1.Onm InAs layer between the InAsSb and InPSb layers in the superlattice. An InAsSb/InAs/InPSb/InAs SLS laser was grown on an InAs substrate with AlAs0.16Sb0.844cladding layers. A lasing threshold and spectrally narrowed laser emission were seen from 80 through 250 K, the maximum temperature where lasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T0 = 39 K, from 80 to 200 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett. 69, pp. 465467, 1996.Google Scholar
[2] Kurtz, S. R-, Allerman, A. A., and Biefeld, R. M., Appl. Phys. Lett. 70, pp. 31883190, 1997.Google Scholar
[3] Kurtz, S. R., Allerman, A. A., Biefeld, R. M. and Baucom, K. C. Appl. Phys. Lett. 72, pp. 20932095, 1998.Google Scholar
[4] Bewley, W. W., Felix, C. L., Vurgaftman, I., Stokes, D. W., Aifer, E. H., Olafsen, L. J., Meyer, J. R., Yang, M. J., Shanabrook, B. V., Lee, H., Martinelli, R. U., and Sugg, A. R., Appl. Phys. Lett. 74, 1075 (1999).Google Scholar
[5] Biefeld, R. M., Phillips, J. D., and Kurtz, S. R., J. Electron. Mater., to be published Jan, 2000.Google Scholar
[6] Biefeld, R. M., Baucom, K. C., Kurtz, S. R., and Follstaedt, D. M., J. Crystal Growth 133, 38 (1993).Google Scholar