Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-14T07:00:56.069Z Has data issue: false hasContentIssue false

High Activity Dual Colloid Ammonia Synthesis Catalysts

Published online by Cambridge University Press:  28 February 2011

Thomas Henry Vanderspurt
Affiliation:
Basic Chemicals Technology, Exxon Chemical Company, P.O. Box 4900, Baytown, TX 77522-4900
Michael A. Richard
Affiliation:
Intermediates Technology, Exxon Chemical Company, P.O. Box 241, Baton Rouge LA 70821
Get access

Abstract

A new synthesis technique produces a family of iron and iron alloy catalysts with a micro-morphology uniquely suited for ammonia synthesis catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haber, F. and Oordt, G. Van, Z Anorg. Chem., 43,111 (1905).Google Scholar
2. Frankenburg, W.G., in CATALYSIS Vol, III Hydrogenation and Dehydrogenation, edited by Emmett, P.H. (Reinhold Publishing Corp., New York, 1955), pp171263.Google Scholar
3a. Mittasch, A., and Kuss, E., Z. Elektrochem., 34, 159 (1928).Google Scholar
b. Mittasch, A., Kuss, E. and Emert, O., Z. Anorg. Allgem. Chem., 170, 193 (1928).Google Scholar
4a. Neilsen, A., Cat. Rev., 4, 1 (1970): Catal. Rev.-Sci. Eng., 23, 17 (1981).Google Scholar
b. Nielsen, A., Kjaer, J., and Hansen, B., J. Catl., 3, 68 (1964).CrossRefGoogle Scholar
5. Ozaki, A. and Aika, K., in A Treatise on Dinitrogen Fixation, edited by Hardy, R.W.F., Bottomley, F. and Bums, R.C., (John Wiley & Sons, New York, 1979), Ch.4.Google Scholar
6a. Nielsen, A., An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd ed. (Jul. Gjellerups Forlag, 1968)pp. 1420;Google Scholar
b. Nielsen, A., An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd ed. (Jul. Gjellerups Forlag, 1968), pp202–227.Google Scholar
7a. Boudart, M., Catal. Rev.-Sci. Eng., 23, 1 (1981).Google Scholar
b. Dumesic, J.A., Topsoe, H. and Boudart, M., J. Catal., 37, 513 (1975).CrossRefGoogle Scholar
8. Brill, R., Richter, E.L., and Ruch, E., Angew. Chem. Internat. Edit., 6, 882 (1967).Google Scholar
9. Spencer, N.D., Schoonmaker, R.C., and Somorjai, G.A., J. Catal., 74,129 (1982).Google Scholar
10a. Bozso, F., Ertl, G., Grunze, M., and Weiss, M., J. Catal., 49, 218 (1977).CrossRefGoogle Scholar
b. Ertl, G., Catal. Rev.-Sci. Eng., 1, 201 (1980).Google Scholar
11. Topsoe, H., Topsoe, A., and Bohlboro, H., Proc. 7th Internatl. Cona. Catal. edited by Seiyama, T. and Tanabe, K., (Kodansha, Tokyo, 1981), p.247 Google Scholar
12. Richard, M.A. and Vanderspurt, T.H., “New Observations During Steady State and Non-Steady Ammonia Synthesis”, presented at the Advances in Catalytic Chemistry IIISymposium, University of Utah, May 1985, Salt Lake City, Utah, (unpublished).Google Scholar
13. Uhde, U.K. Patents 253,122 (April, 1927) and 273,735 (October, 1928)Google Scholar
14. Vanderspurt, T.H. and Richard, M.A., U.S. Patent No. 4, 588, 705 (May 13,1986).Google Scholar