Hostname: page-component-788cddb947-pt5lt Total loading time: 0 Render date: 2024-10-19T18:34:53.087Z Has data issue: false hasContentIssue false

Hot Electron Effects on Thermionic Emission Cooling in Heterostructures

Published online by Cambridge University Press:  10 February 2011

Taofang Zeng
Affiliation:
Mechanical and Aerospace Engineering Department, University of California, Los Angles, CA 90095
Gang Chen
Affiliation:
Mechanical and Aerospace Engineering Department, University of California, Los Angles, CA 90095
Get access

Abstract

The energy conversion between electrons and phonons in a heterostructure is studied for thermionic cooling by using the hot electron approximation. Calculations show that the energy exchange rate between electrons and phonons should be small for a net cooling power, and the layer length should be in the range of submicron for effective cooling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahan, G. D., J. Applied Physics, v. 76, p. 4362 (1994)CrossRefGoogle Scholar
2. Shakouri, A., and Bowers, J. E., Applied Physics Letters, v. 71, p. 1234 (1997)CrossRefGoogle Scholar
3. Mahan, G. D., and Woods, L. M, Physical Review Letters, v. 80, p. 4016 (1998)CrossRefGoogle Scholar
4. Mahan, G. D., Sofo, J. O., and Bartkowiak, M., J. Applied Physics, v. 83, p. 4683 (1998)CrossRefGoogle Scholar
5. Shakouri, A., Lee, E. Y., Smith, D. L., Narayanamurti, V., and Bowers, J. E., Microscale Thermophysical Engineering, v. 2, p. 37 (1998)Google Scholar
6. Hatsopoulous, G. N., and Kaye, J. J., Applied Physics, v.29, p. 1124 (1958)CrossRefGoogle Scholar
7. Rhoderick, E. H., and Williams, R. H., Metal-Semiconductor Contacts, 2nd Ed., Clarendon Press, Oxford (1988)Google Scholar
8. Tait, G. B., and Westgate, C. R., IEEE Trans. Electron Devices, v. 38, p. 1262 (1991)CrossRefGoogle Scholar
9. Hario, K., and Yanai, H., IEEE Trans. Electron Devices, v. 37, p. 1093 (1990)CrossRefGoogle Scholar
10. Yang, K., East, J. R., and Haddad, G. I, Solid-State Electronics, v. 3, 00. p. 321 (1993)CrossRefGoogle Scholar
11. Hjelmgren, H., and Tang, T. W, Solid-State Electronics, v. 9, p. 1649 (1994)CrossRefGoogle Scholar
12. Sze, S. M., Physics of Semiconductor Devices, 2nd Ed., John Wiley & Sons, New York, 1981 Google Scholar
13. Reggiani, L. (Ed.), Hot-Electron Transport in Semiconductors, Springer-Verlag, 1985 CrossRefGoogle Scholar
14. Stratton, R., Physical Review, v. 126, p. 2002 (1962)CrossRefGoogle Scholar
15. Hess, K., Advanced Theory of Semiconductor Devices, Prentice Hall, New Jersey, 1988 Google Scholar
16. Lundstrom, M., Fundamentals of Carrier Transport, Addison-Wesley, Reading, MA, 1990 Google Scholar
17. Qiu, T.Q., and Tien, C. L., J. Heat Transfer, v.115, p.835 (1993)CrossRefGoogle Scholar
18. Kaganov, M. I., Lifshitz, I. M., and Tanatarov, L. V., Sov. Phys. JETP, v. 4, p. 173 (1957)Google Scholar