Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-28T07:09:41.531Z Has data issue: false hasContentIssue false

Hrtem of the Cu/Mno Interface in an Internally Oxidized Cumn Alloy

Published online by Cambridge University Press:  21 February 2011

F. Ernst*
Affiliation:
Max-Planck-lnstitut für Metallforschung, Institut für Werkstoffwissenschaft, Seestrasse 92, D-7000 Stuttgart, West Germany
Get access

Abstract

The structure of the Cu/MnO interface has been studied using high resolution electron microscopy (HRTEM). Interfaces were formed by internal oxidation of a CuMn alloy. In the course of the reaction, MnO particles precipitate in several special orientations relative to the Cu lattice: “parallel” topotaxy, “twin” topotaxy, and a 55°[110] rotation yielding (111)Cu∥(002)MnO. Each of the three Cu/MnO orientation relationships has a characteristic particle morphology reflecting thermodynamically favourable interface structures. In parallel topotaxy MnO particles preferentially form flat {111}Cu/{111} MnO interfaces with a lattice mismatch of 21%. Although this mismatch is large, the existence of coherence strains in the Cu cannot be excluded. MnO particles in the 55°[110] orientation form regions of semi-coherent Interface where {200}MnO planes face a set of parallel {111} Cu planes with a mismatch of only 6%. This interface variant exhibits equally spaced steps, every 16 to 18 Cu {111} planes. Parallel to every step there is a misfit dislocation in the Cu at a stand-off distance of about 2 Cu {111} spacings. The relationship between structure and energy of the Cu/MnO interface is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mader, W., Z. Metallkde. 80, 139 (1989)Google Scholar
2 Merkle, K., Proc. Acta/Scripta Metall. Conf. on Metal/Ceramic Interfaces, U.C. Santa Barbara, California, January 16-18, 1989, editors Rühle, M. and Evans, A. G. Google Scholar
3 Ernst, F., Pirouz, P., and Heuer, A. H., Mat. Res. Soc. Proc. 138, 557 (1989)Google Scholar
4 Rhines, F. N., Trans. AIME 137, 246 (1940)Google Scholar
5 Gmelins Handbuch der anorg. Chemie 56 (Mn) C1, 8th ed., (Verlag Chemie 1973)Google Scholar
6 O'Keefe, M. A. and Buseck, P. R., Trans. Am. Crystallogr. Assoc. 15, 27 (1979)Google Scholar
7 Smithells Metals Reference Book, editor Brandes, E. A. (Butterworths, London, 1983)Google Scholar
8 Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelley, K. K., Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park Ohio, 1973)Google Scholar
9 Bonnet, R., Mat. Res. Soc. Proc. 122, 281 (1988)Google Scholar
10 Stoneham, A. M. and Tasker, P. W., Journal de Physique 49, Colloque C5, p99 (1989)Google Scholar
11 Fecht, H. J. and Gleiter, H., Acta. metall. 33, 557 (1985)Google Scholar