Hostname: page-component-68945f75b7-72kh6 Total loading time: 0 Render date: 2024-08-06T07:06:58.481Z Has data issue: false hasContentIssue false

Incorporation of Siloxane And Cyclophosphazene Units Into Metal Oxides by a Nonhydrolytic Sol-Gel Route

Published online by Cambridge University Press:  10 February 2011

L. Crouzet
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Montpellier, F34095 Cedex 05
D. Leclercq
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Montpellier, F34095 Cedex 05
P. H. Mutin
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Montpellier, F34095 Cedex 05
R. J. P. Corriu
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Montpellier, F34095 Cedex 05
A. Vioux
Affiliation:
UMR CNRS 5637, cc 007, Université Montpellier 2, Montpellier, F34095 Cedex 05
Get access

Abstract

A nonhydrolytic sol-gel method was used to incorporate siloxane and cyclotriphosphazene units within metal oxides. The degree of mixing of the components was investigated by EDX, XPS, and 29Si and 31P solid-state NMR. The NMR data confirmed the presence of Si-O-M and PO- M bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mark, J. E., Heterogeneous Chem. Rev. 3, 307 (1996).10.1002/(SICI)1234-985X(199612)3:4<307::AID-HCR64>3.0.CO;2-33.0.CO;2-3>Google Scholar
2 Wen, J. Y. and Wilkes, G. L., Chem. Mater. 8, 1667 (1996).10.1021/cm9601143Google Scholar
3 Mark, J. E., J. of Macromol. Sci.-Pure & Applied Chem. A33 (12), 2005 (1996).10.1080/10601329608011025Google Scholar
4 Dird, S., Babonneau, F., Sanchez, C., and Livage, J., J. Mater. Chem. 2, 239 (1992).Google Scholar
5 Babonneau, F., Polyhedron 13, 1123 (1994).10.1016/S0277-5387(00)80249-1Google Scholar
6 Allcock, H. R. and Kuharcik, S. E., J. Inorg. Organomet. Polym. 5, 307 (1995).10.1007/BF01193059Google Scholar
7 Coltrain, B. K., Ferrar, W. T., Landry, C. J. T., Molaire, T. R., and Zumbulyadis, N., Chem. Mater. 4, 358 (1992).10.1021/cm00020a024Google Scholar
8 Coltrain, B. K., Ferrar, W. T., Landry, C. J. T., Molaire, T. R., Schildkraut, D. E., and Smith, V. K., Polym. Prepr. 34, 266 (1993).Google Scholar
9 Guglielmi, M., Brusatin, G., Facchin, G., Gleria, M., Jaeger, R. De, and Musiani, M., J. Inorg. Organomet. Polym. 6, 221 (1996).10.1007/BF01057748Google Scholar
10 Allcock, H. R. and Walsh, E. J., J. Amer. Chem. Soc. 94, 119 (1972).10.1021/ja00756a023Google Scholar
11 Andrianainarivelo, M., Corriu, R., Leclercq, D., Mutin, P. H., and Vioux, A., J. Mater. Chem. 6, 1665 (1996).10.1039/JM9960601665Google Scholar
12 Vioux, A., Chem. Mater. 9, 2292 (1997).10.1021/cm970322aGoogle Scholar
13 Babonneau, F. in Better Ceramics Through Chemistry VI, edited by Cheettham, A. K., Brinker, C. J., Mecartney, M. L. and Sanchez, C. (Mat. Res. Soc. Symp. Proc. 346, Pittsburg, PA, 1994) pp. 949960.Google Scholar
14 Ingo, G. M., Dire, S., and Babonneau, F., Applied Surf. Sci. 70–1 (Part A), 230 (1993).10.1016/0169-4332(93)90433-CGoogle Scholar
15 Kintzinger, J. P. and Marsmann, H., NMR Basic Principles and Progress, 17, Oxygen-17 and Silicon-29 (Spinger-Verlag, Berlin, 1981) p. 151.10.1007/978-3-642-87762-9Google Scholar
16 Schutte, C. L., Fox, J. R., Boyer, R. D., and Uhlmann, D. R., in Ultrastructure Processing of Advanced Materials, edited by Uhlmann, D. R. and Ulrich, D. R. (J. Wiley & Sons, N.Y., 1992), pp. 95152.Google Scholar
17 Engelhardt, G. and Michel, D., High resolution solid-state NMR of silicates and zeolites (J. Wiley and Sons, 1987) pp. 215217.Google Scholar
18 Apblett, A. W., Warren, A. C., and Barron, A. R., Chem. Mater. 4, 167 (1992).10.1021/cm00019a033Google Scholar