Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T00:09:18.106Z Has data issue: false hasContentIssue false

Influence of Plasma Excitation Frequency on Deposition Rate and on Film Properties for Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

H. Curtins
Affiliation:
Institut de Microtechnique, Breguet 2, CH-2000 Neuchatel
N. Wyrsch
Affiliation:
Institut de Microtechnique, Breguet 2, CH-2000 Neuchatel
M. Favre
Affiliation:
Institut de Microtechnique, Breguet 2, CH-2000 Neuchatel
K. Prasad
Affiliation:
Institut de Microtechnique, Breguet 2, CH-2000 Neuchatel
M. Brechet
Affiliation:
Institut de Microtechnique, Breguet 2, CH-2000 Neuchatel
A. V. Shah
Affiliation:
Institut de Microtechnique, Breguet 2, CH-2000 Neuchatel
Get access

Abstract

The preparation of hydrogenated amorphous silicon by the radio-frequency (RF) glow discharge technique is shown to be strongly dependent on the plasma excitation frequency. We have investigated the influence of this parameter on the deposition rate, on the hydrogen content and on the opto-electronic properties of the amorphous silicon films, over the range 25 to 150 MHz. A large variation of the deposition rate is observed, while most of the material properties remain practically unchanged. The results should be of considerable interest for mass production of low-cost amorphous silicon thin film devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pankove, J.I., (editor), Semiconductors and Semimetals, Vol.21, Academic Press Inc., 1984, part A-DGoogle Scholar
[2] Takahashi, K. and Konagai, M., Amorphous Silicon Solar Cells, North Oxford Acad. 1986 Google Scholar
[3] Hamasaki, T., Ueda, M., Chayahara, A., Hirose, M. and Osaka, Y., Appl. 4 4 Phys. Lett. (1984) p.600Google Scholar
[4] Anderson, J.C. and Biswas, S., J. of Non-Cryst. Solids 77&78(1985)p.817 Google Scholar
[5] Yamada, A., Konagai, M. and Takahashi, K., Jap. J. of Appl. Phys. 24 (1985)p.1586 Google Scholar
[6] Kato, S. and Akoi, T., J. of Non-Cryst. Solids 77&78(1985)p.813 Google Scholar
[7] Delahoy, A.E., J. of Non-Cryst. Solids 7 7&78(1985)p.833 Google Scholar
[8] Matsuda, A., Kaga, T., Tanaka, H. and Tanaka, K., Jap. J. of Appl. Phys. 23(1984)p.L567 Google Scholar
[9] Boulitrop, F., Proust, N., Magarino, J. and Criton, E., J. Appl. Phys. 58(1985)p.3494 Google Scholar
[10] Curtins, H., Wyrsch, N. and Shah, A.V., Electronics Letters, 23(1987)p.228 Google Scholar
[11] Curtins, H., Wyrsch, N. and Shah, A.V., Plasma Chemistry and Plasma Processing, (accepted for publication, 1987)Google Scholar
[12] Wertheimer, M.R. and Moisan, M., J.Vac. Sci. Technol. A3(1985)p.2643 Google Scholar
[13] Flamm, D.L., J.Vac. Sci. Technol. A4(1986)p.729 Google Scholar
[14] Wagner, H. and Beyer, W., Proc. 5th E.C. Photovoltaic Conference, Greece, 1983, p.803 Google Scholar
[15] Shanks, H., Fang, C.J., Ley, L. and Cardona, M., Phys. Stat. Solidi (b), 100(1980)p.43 Google Scholar
[16] Jackson, W.B. and Amer, N.M., Phys. Rev. B, 25(1982)p.5559 Google Scholar