Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T19:26:21.475Z Has data issue: false hasContentIssue false

Initial Stages of Interface Formation: The Influence of Surface Reconstruction

Published online by Cambridge University Press:  25 February 2011

H.-J. Gossmann*
Affiliation:
AT&T Bell Laboratories, Murray Hill, N.J. 07974
Get access

Abstract

The initial stages of interface formation are crucial for the growth of an overlayer, particularly for ultra-thin films. While growth rate, growth temperature and lattice match are important parameters in molecular beam epitaxy, growth of semiconductor heterostructures always begins on a reconstructed surface. The effect of this reconstruction has to be known before a complete understanding of the growth process is possible. Two examples will be discussed: (1) A necessary condition for perfect growth is the reordering of the substrate surface, i.e. those atoms at the interface which are originally displaced due to the reconstruction have to be brought back to bulk positions. Si(111)7×7 and Si(100)2×1 surfaces behave differently in this respect. The 2×1 orders upon deposition of Si, Ge or Sn at room-temperature whereas the 7×7 does not. This result will be correlated with the different classes of reconstruction to which these surfaces belong. The possible rela-tionship with the difference in substrate temperatures required to achieve homo-epitaxial growth on Si(100) and Si(111) surfaces will be discussed. (2) Perfect growth also relies on proper control of the growth-mode. As an example, the island-ing behavior found for deposition of Sn on Si will be discussed. While surface diffusion over macroscopic distances is observed, dramatic changes in the affinity for clustering occur depending on surface reconstruction and preparation, suggesting that clustering in this system may be controlled by appropriate choices of growth parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bevk, J., Ourmazd, A., Feldman, L.C., Pearsall, T.P., Bonar, J.M., Davidson, B.A. and Mannaerts, J.P., Appl.Phys.Lett. 50, 760 (1987).Google Scholar
2. Frank, F. C. and van der Merwe, J. H., Proc.Roy.Soc. London A198, 216 (1949); J. H. van der Merwe, J.Appl.Phys. 34, 117 (1963); J. H. van der Merwe, J.Appl.Phys. 34, 123 (1963).Google Scholar
3. see for example Grabow, M. H. and Gilmer, G. H., these proceedings.Google Scholar
4. Chu, W.-K., Mayer, J.W. and Nicolet, M.-A., Backscattering Spectrometry, Academic, New York, 1978; L.C.Feldman, J.W.Mayer and S.T.Picraux, Materials Analysis by Ion Channeling, Academic, New York, 1982.CrossRefGoogle Scholar
5. Gossmann, H.-J. and Feldman, L.C., Phys.Rev. B32, 6 (1985).Google Scholar
6. Gossmann, H.-J., Zinke-Allmang, M., Feldman, L.C. and Fisanick, G.J., to be published.Google Scholar
7. Gossmann, H.-J., Surf. Sci. 179, 453 (1987).Google Scholar
8. Gossmann, H.-J., Feldman, L.C. and Gibson, W.M., Surf.Sci. 155, 413 (1985).Google Scholar
9. Gibson, J.M., Gossmann, H.-J., Bean, J.C., Tung, R.T. and Feldman, L.C., Phys.Rev.Lett. 56, 355 (1986).Google Scholar
10. Robinson, I.K., Waskiewicz, W.K. and Tung, R.T., Phys.Rev.Lett. 57, 2714 (1986).Google Scholar
11. Schlier, R.E. and Farnsworth, H.F., J.Chem.Phys. 30, 917(1959); D.J.Chadi, Phys.Rev.Lett. 43, 43(1979).Google Scholar
12. Binnig, G., Rohrer, H., Gerber, Ch. and Weibel, E., Phys.Rev.Lett. 50, 120(1983); E.G.McRae, Surf.Sci.124, 106(1983); Phys.Rev. B28, 2305(1983).Google Scholar
13. Takayanagi, K., Tanishiro, Y., Takahashi, M., Takahashi, S., J.Vac.Sci.Technol. A3, 1502 (1985).Google Scholar
14. Burton, W.K., Cabrera, N. and Frank, F.L., Phil.Trans.Roy.Soc. (London) A243, 299 (1951); E.Kasper, Appl.Phys. A28, 129 (1982).Google Scholar
15. Grabow, M.H., private communicationGoogle Scholar
16. Grabow, M.H. and Gilmer, G.H., to be published.Google Scholar
17. Estrup, P.J. and Morrison, J., Surf.Sci. 2, 465 (1964).Google Scholar
18. Ichikawa, T., Surf.Sci. 140, 37 (1984).CrossRefGoogle Scholar
19. Zinke-Allmang, M. and Feldman, L.C., to be published.Google Scholar
20. Ishizaka, A. and Shiraki, Y., J.Electrochem.Soc. 133, 666 (1986).CrossRefGoogle Scholar