Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-27T01:19:38.153Z Has data issue: false hasContentIssue false

In-Plane Asymmetries on the Ge(111)-c(2×8) Surface Mapped with the Scanning Tunneling Microscope

Published online by Cambridge University Press:  15 February 2011

P. Molinàs-Mata
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, FRG
J. Zegenhagen
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, FRG
M. Böhringer
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80, FRG
N. Takeuchi
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, via Beirut 4, 1–34014 Trieste, Italy
A. Selloni
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, via Beirut 4, 1–34014 Trieste, Italy Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
Get access

Abstract

We report on new experimental studies of the Ge(111)-c(2×8) reconstruction performed with low-energy electron diffraction. (LEED) and scanning tunneling microscopy (STM). Weak quarter-order reflections are present in the c(2 × 8) LEED pattern in agreement with previous observations and results of ab initio calculations. In order to gain insight into the predicted splitting of dangling bond states, we compare constant current topographs (CCT's) performed at high-tunneling currents (40.nA) with first-principles calculations of the local density of states (LDOS) 1Å above the surface adatoms and obtain good qualitative agreement. We finally discuss to what extent the STM CCT's at high tunneling currents (small sample-tip distances (STD)) are sensitive to surface states outside the Г point.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takeuchi, N., Selloni, A., and Tosatti, E., Phy. Rev. Lett. 69, 648 (1992).Google Scholar
2. No mirror planes were assumed in the buckled model for the Ge(111)-c(2×8) reconstruction. Chadi, D.J. and Chiang, C., Phys. Rev. B 23, 1843 (1981).Google Scholar
3. Molinàs-Mata, P. and Zegenhagen, J., Solid State Commun. 84, 393 (1992).Google Scholar
4. Yang, W.S. and Jona, F., Phys. Rev. B 29, 899 (1984).Google Scholar
5. Phaneuf, R.J. and Webb, M.B., Surf. Sci. 164, 167 (1985).Google Scholar
6. Ichikawa, T. and Ino, S., Surf. Sci. 85, 221 (1979).Google Scholar
7. Feidenhans'l, R., Pedersen, J.S., Bohr, J., Nielsen, M., Grey, F., and Johnson, R.L., Phys. Rev. B 38, 9715 (1988).Google Scholar
8. Becker, R.S., Swartzentruber, B.S., Vickers, J.S., and Klistner, T., Phys. Rev. B 39, 1633 (1989) and references therein.Google Scholar
9. Hirschorn, E.S., Liu, D.S., Leibsle, F.M., Samsavar, A., and Chiang, T.C., Phys. Rev. B 44, 1403 (1991).Google Scholar
10. Kubby, J.A., Griffith, J.E., Becker, R.S., and Vickers, J.S., Phys. Rev. B 36, 6079 (1987).Google Scholar
11. Chen, C.J., J. Vac. Sci. Technol. A, 6(2), 319 (1988).Google Scholar