Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T04:30:44.183Z Has data issue: false hasContentIssue false

In-Situ Phase Separation of an Amine-Terminated Siloxane in Epoxy Matrices

Published online by Cambridge University Press:  15 February 2011

D. F. Bergstrom
Affiliation:
Dow Corning Corporation, Midland, MI 48686-0994
G. T. Burns
Affiliation:
Dow Corning Corporation, Midland, MI 48686-0994
G. T. Decker
Affiliation:
Dow Corning Corporation, Midland, MI 48686-0994
R. L. Durall
Affiliation:
Dow Corning Corporation, Midland, MI 48686-0994
D. Fryrear
Affiliation:
Dow Corning Corporation, Midland, MI 48686-0994
G. A. Gornowicz
Affiliation:
Dow Corning Corporation, Midland, MI 48686-0994
M. Tokunoh
Affiliation:
Composite Materials Research Laboratories, Toray Industries, Inc.lyogun, Ehime 791-31 Japan
N. Odagiri
Affiliation:
Composite Materials Research Laboratories, Toray Industries, Inc.lyogun, Ehime 791-31 Japan
Get access

Abstract

We have developed an amino-functional silicone resin to toughen epoxies which, when prereacted with the epoxy function in resins, undergoes in-situ phase separation during final epoxy curing. SEM analyses of the morphology of fracture surfaces of MY720- DDS, Epon 828-DDS and other epoxy matrices modified with the silicone resin showed rough surfaces with the formation of very uniform <10 μm spheres. Silicon and sulfur elemental distribution mapping showed silicon rich spheres embedded in an epoxy matrix. We report cavitation, particle debonding and pull-out, and an increases in fracture surface area as possible modes of toughening. Silicone modified materials give improvements in slow strain rate G1c fracture toughness measurements of 250–400%, similar to carboxy terminated polybutadiene-acrylonitrile copolymer (CTBN) modifiers, but with a much smaller flexural modulus loss. The Tg of the modified epoxy matrices are maintained, moisture resistance is improved, and flammability is reduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Levita, G., in Rubber-Modified Thermoset Resins: Advances in Chemistry 208, edited by Riew, C. K. and Gillham, J. K. (American Chemical Society, Washington, DC, 1984) pp. 93118.Google Scholar
2. Bascom, W. D., Hunston, D. L., in Rubber-Modified Thermoset Resins: Advances in Chemistry 208, edited by Riew, C. K. and Gillham, J. K. (American Chemical Society, Washington, DC, 1984) pp. 135172.Google Scholar
3. (a) Bucknall, C. B., Patridge, I. K., Polymer, 24, 639 (1983); (b) J. Daimont, R. J. Moulton, Science of Advanced Materials and Process Engineering Series 29, 422 (1984).Google Scholar
4. (a) Rowe, E. H., Siebert, A. R., Drake, R. S., Mod. Plast., 47, 110 (1970); (b) J. M. Sultan, F. McGarry, Polym. Eng. Sci., 13, 29 (1973).Google Scholar
5. Riffle, J. S., Yilgor, I., Banthia, A. K., Tran, C., Wilkes, G. L., McGrath, J. E., J. Am. Chem. Soc. Symp. Ser., 221, 21 (1982).Google Scholar
6. Cecere, J. A., Hedrick, J. L., McGrath, J. E., Science of Advanced Materials and Process Engineering Series, 31, 580 (1986).Google Scholar
7. Bergstrom, D. F., Burns, G. T., Decker, G. T., Durall, R. L., Fryrear, D., Gornowicz, G. A., Tokunoh, M., Odagiri, N., Science of Advanced Materials and Process Engineering Series, 37, 278 (1992).Google Scholar
8. Lee, S. M., J. Mat. Sci. Lett., 511 (1982).Google Scholar