Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-09T08:39:17.344Z Has data issue: false hasContentIssue false

Investigation of Electronic Excitation Crystallization Enhancement in Amorphous Gesb Films Upon Ultrashort Laser Pulse Irradiation

Published online by Cambridge University Press:  15 February 2011

J. Solis
Affiliation:
Instituto de Optica, CSIC. C/Serrano 121, 28006-Madrid, (SPAIN), Tel:+34-15616800, Fax:+34-1-5645557, e-mail: IODJS37@pinarl.csic.es
C.N. Afonso
Affiliation:
Instituto de Optica, CSIC. C/Serrano 121, 28006-Madrid, (SPAIN), Tel:+34-15616800, Fax:+34-1-5645557, e-mail: IODJS37@pinarl.csic.es
S.C.W. Hyde
Affiliation:
Femtosecond Optics Group, Optics Dept., Imperial College of Science and Technology, Prince Consort Rd, London SW7-2BZ, (UK).
N.P. Barry
Affiliation:
Femtosecond Optics Group, Optics Dept., Imperial College of Science and Technology, Prince Consort Rd, London SW7-2BZ, (UK).
P.M.W. French
Affiliation:
Femtosecond Optics Group, Optics Dept., Imperial College of Science and Technology, Prince Consort Rd, London SW7-2BZ, (UK).
Get access

Abstract

Pulsed laser induced crystallization of amorphous GeSb films has been studied as a function of the laser pulse duration. The energy density crystallization threshold has been determined for pulses in the range from 400 fs to 8 ns. The threshold is observed to increase substantially for pulse durations in the ns range due to the existence of heat flow through the substrate while the pulse is still being absorbed. The energy density crystallization threshold remains constant within the experimental resolution as the pulse duration is decreased down to 800 fs. For the shortest pulse length used, (400 fs), a decrease in the threshold is observed, suggesting the possible existence of electronic excitation enhanced crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tom, H.W.K., Aumillier, G.D., Brito-Cruz, C.H.; Phys.Rev.Lett. 60, 1438 (1988)Google Scholar
2 Siegal, Y., Glezer, E.N., Mazur, E.; Phys.Rev. B49, 16403 (1994)Google Scholar
3 Govorkov, S.V., Schröder, Th., Shumay, I.L., Heist, P.; Phys.Rev. B46, 6864 (1992)Google Scholar
4 Saeta, P., Wang, J.-K, Siegal, Y., Bloembergen, N., Mazur, N.; Phys.Rev.Lett. 67, 1023 (1991)Google Scholar
5 Kash, J.A., Tsang, J.C., Hvam, J.M.; Phys.Rev.Lett. 54, 2151 (1985)Google Scholar
6 Van Vechten, J.A. in Laser and Eletron Beam Processing of Semiconductors, Edited by White, C.W. and Peercy, P.S.; Academic Press, New York (1980).Google Scholar
7 Van Vechten, J.A., Tsu, R., Saris, F.W.; Phys.Lett. 74A, 422 (1979)Google Scholar
8 Sinke, W., Warabisako, T., Miyao, M., Tokuyama, T., Roorda, S., Saris, F.W.; J.non Cryst.Solids. 99, 308 (1988)Google Scholar
9 Grimaldi, M.G., Baeri, P., Malvezzi, M.A.; Phys.Rev. B44, 1546 (1991)Google Scholar
10 Marfaing, J., Marine, W.; Phase Transitions 14, 225 (1989)Google Scholar
11 Afonso, C.N., Solis, J., Catalina, F. and Kalpouzos, C.; Appl.Phys.Lett. 60, 3123 (1992).Google Scholar
12 Solis, J., Afonso, C.N., Trull, J.F., Morilla, M.C.; J.Appl.Phys. 75, 7788 (1994).Google Scholar
13 Afonso, C.N., Morilla, M.C., Solis, J., Rizvi, N.H., Ollacarizqueta, M.A., Catalina, F.; Mat.Sci.Eng. A173, 343 (1993).Google Scholar
14 Hyde, S.C.W., Barry, N.P., Mellish, R., French, P.M.W., Taylor, J.R., van der Poel, C.J., Valster, A.; Opt.Lett. 20, 160 (1995)Google Scholar
15 Hulin, D., Mourchid, A., Fauchet, P.M., Nighan, W.L. Jr; J.non.Cryst.Solids. 137&138, 527 (1991).Google Scholar
16 Wraback, M., Tauc, J., Pang, D., Paul, W., Lee, J.-K., Schiff, E.A.; J.non.Cryst.Solids. 137&138, 527 (1991).Google Scholar