Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T15:57:53.060Z Has data issue: false hasContentIssue false

The Ion Implanted Arsenic Tail in Silicon

Published online by Cambridge University Press:  21 February 2011

S. E. Beck
Affiliation:
Sherman Fairchild Center #161, Lehigh University, Bethlehem, PA 18015
R. J. Jaccodine
Affiliation:
Sherman Fairchild Center #161, Lehigh University, Bethlehem, PA 18015
C. Clark
Affiliation:
AT&T Bell Laboratories, 555 Union Blvd., Allentown, PA 18103
Get access

Abstract

Rapid thermal annealed tail regions of shallow junction arsenic implants into silicon have been investigated. Tail profiles have been roduced by an anodic oxidation and stripping technique after implantation to fluences of 1014 to 1016 cm−2 and by implanting through a layer of silicon dioxide. Electrical activation and diffusion have been achieved by rapid thermal annealing in the temperature range of 800 to 1100 °C. Electrically active defects remain after annealing. Spreading resistance and deep level transient spectroscopy results are presented. The diffusion of the arsenic tail is discussed and compared with currently accepted models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hu, S.M., in Atomic Diffusion in Semiconductors, edited by Shaw, D. (Plenum, London,1973), Chap. 5.Google Scholar
2. Schwenker, R.O., Pan, E.S., and Lever, R.F., J. Appl. Phys. 42, 3195 (1971).Google Scholar
3. Fair, R.B. and Weber, G.R., J. Appl. Phys. 44, 273 (1973).Google Scholar
4. Fair, R.B. and Tsai, J.C.C., J. Electrochem. Soc. 122, 1689 (1975).Google Scholar
5. Tsai, M.Y., Morehead, F.F., Baglin, J.E.E., and Michel, A.E., J., Appl. Phys. 51, 3230 (1980).Google Scholar
6. Guerrero, E., Potzl, H., Tielert, R., Grasserbauer, M., and Stingeder, G., J. Electrochem. Soc. 129, 1826 (1982).Google Scholar
7. Nobili, D., Carabelas, A., Celotti, G., and Solmi, S., J. Electrochem. Soc. 130 922 (1983).Google Scholar
8. Angelucci, R., Celotti, G., Nobili, D., and Solmi, S., J. Electrochem. Soc. 132, 2726 (1985).Google Scholar
9. Beck, S.E., Jaccodine, R.J., Filo, A.J., and Irwin, R. in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J., and Davies, G. (Mater. Res. Soc. Proc. 104, Pittsburgh, PA 1988) pp. 219222.Google Scholar
10. Seidel, T.E., Pai, C.S., Lischner, D.J., Maher, D.M., Knoell, R.V., Williams, J.S., Penumalli, B.R., and Jacobson, D.C. in Energy-Beam Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D.K. et al. (Mater. Res. Soc. Proc. 35, Pittsburgh, PA 1985)Google Scholar
11. Harris, R.D., PhD thesis, Lehigh University, 1981.Google Scholar
12. Troxell, J.R., PhD thesis, Lehigh University, 1979.Google Scholar
13. Song, L.W., Benson, B.W., and Watkins, G.D., Phys. Rev. B 31, 1452 (1986).Google Scholar
14. Hautojarvi, P., Huttunsen, P., Makinen, J., Punkka, E., and Vehanen, A. in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J., and Davies, G. (Mater. Res. Soc. Proc. 104, Pittsburgh, PA 1988) pp 104110.Google Scholar
15. Lietoila, A., Gibbons, J.F., and Sigmon, T.W., Appl. Phys. Lett., 36, 765 (1980).Google Scholar
16. Christel, L.A., Gibbons, J.F., and Mylroie, S., Nucl. Instrum. Methods 182/183 187 (1981).Google Scholar
17. Alexandrova, S. and Young, D.R., J. Appl. Phys. 54, 174 (1983).Google Scholar