Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-09T22:07:37.762Z Has data issue: false hasContentIssue false

Ion-Surface Interactions During Epitaxy

Published online by Cambridge University Press:  26 February 2011

S. A. Barnett
Affiliation:
Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL 60208
C.-H. Choi
Affiliation:
Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL 60208
R. Kaspi
Affiliation:
Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, IL 60208
Get access

Abstract

Recent work on low-energy ion-assisted deposition of epitaxial films is reviewed. Much of the interest in this area has centered on the use of very low ion energies (∼ 25 eV) and high fluxes (> 1 ion per deposited atom) obtained using novel ion-assisted deposition techniques. These methods have been applied in ultra-high vacuum, allowing the preparation of high-purity semiconductor materials. The following ion-surface interaction effects during epitaxy are discussed: improvements in crystalline perfection during low temperature epitaxy, ion damage effects, improved homogeneity and properties in III-V alloys grown within miscibility gaps, and changes in nucleation mechanism from Stranski-Krastanov to layer-by-layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Greene, J.E. and Barnett, S.A., J. Vac. Sci. Technol. 21, 285 (1982).Google Scholar
2. Greene, J.E., Barnett, S.A., Sundgren, J.-E., and Rockett, A., in Ion-Beam Assisted Film Growth, edited by Itoh, T. (Elsevier Science Publishers, New York, 1988), Ch. 5.Google Scholar
3. Barnett, S.A., Greene, J.E., Sundgren, J.-E., J. Metals 41, 16 (1989).Google Scholar
4. Herbots, N., Hellman, O.C., Cullen, P.A., Vancauwenberghe, O., Appleton, B.R., Pennycook, S.J., and Zuhr, R.A., in Deposition and Growth: Limits for Microelectronics, edited by Lucovsky, G., (AIP Conf. Proc. No. 167, New York, 1988).Google Scholar
5. Ohkawa, K., Mitsuyu, T., and Yamazaki, O., J. Cryst. Growth 86, 329 (1988).Google Scholar
6. Barnett, S.A., Kramer, B., Romano, L.T., Shah, S.I., Ray, M.A., Fang, S., and Greene, J.E., in Layered Structures. Epitaxy, and Interfaces, edited by Gibson, J.M. and Dawson, L.R., (North Holland, Amsterdam, 1985), p. 285.Google Scholar
7. Müller, K.-H., Phys. Rev. B 35, 7906 (1987).Google Scholar
8. Ohmi, T., Ichikawa, T., Iwabuchi, H., and Shibata, T., J. Appl. Phys. 66, 4756 (1989).Google Scholar
9. Mannoh, M., Nomura, Y., Shinozaki, K., Mihara, M., and Ishii, M., J. Appl. Phys. 59, 1092 (1986).Google Scholar
10. Ray, M.A., Barnett, S.A., and Greene, J.E., J. Vac. Sci. Technol. A7, 125 (1989).Google Scholar
11. Rohde, S., Barnett, S.A., and Choi, C.-H., J. Vac. Sci. Technol. A7, 2273 (1989).Google Scholar
12. Choi, C.-H., Hultman, L., and Barnett, S.A., J. Vac. Sci. Technol. A8, 1587 (1990).Google Scholar
13. Biegelsen, D.K., Ponce, F.A., Krusor, B.S., Tramontana, J.C., Yingling, R.D., Bringans, R.D., and Fenner, D.B. in Heteroepitaxy on Silicon: Fundamentals. Structure and Devices, edited by Choi, H.K., Hull, R., Ishiwara, H., and Nemanich, R.J. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988) p. 33.Google Scholar
14. Choi, C.-H., Hultman, L., Ai, R., and Barnett, S.A., Appl. Phys. Lett., in press.Google Scholar
15. Choi, C.-H. and Barnett, S.A., unpublished.Google Scholar
16. Chason, E., Bedrossian, P., Horn, K.M., Tsao, J.Y., and Picraux, S.T., Appl. Phys. Lett. 57, 1793 (1990).Google Scholar
17. Wehner, G.K., Warner, R.M. Jr, Wang, P.D., and Kim, Y.H., J. Appl. Phys. 64, 6754 (1988).Google Scholar
18. Choi, C.-H. and Barnett, S.A., Appl. Phys. Lett. 55, 2319 (1989).Google Scholar
19. Pirouz, P., Ernst, F., and Cheng, T.T., in Ref. 13, p. 57.Google Scholar
20. Choi, C.-H. and Barnett, S.A. in Characterization and Processing of Materials Using Ion Beams, edited by Rehn, L.E., Greene, J.E., and Smidt, F.A., (Mater. Res. Soc. Proc. 128, Pittsburgh, PA 1989), p. 689.Google Scholar
21. Onabe, K., Jpn. J. Appl. Phys. 21, L323 (1982); 22, 287 (1983)Google Scholar
22. Stringfellow, G.B., J. Cryst. Growth 58, 194 (1982); J. Electron. Mater. 11, 903 (1982).Google Scholar
23. Cherng, M.J., Cherng, Y.T., Jen, H.R., Harper, P., Cohen, R.M., and Stringfellow, G.B., J. Electronic Materials 15, 79 (1986).Google Scholar
24. Mukai, S., J. Appl. Phys. 54, 2635 (1983).Google Scholar
25. Norman, A.G. and Booker, G.R., J. Appl. Phys. 52, 4715 (1985).Google Scholar
26. Kaspi, R. and Barnett, S.A., unpublished.Google Scholar
27. Barnett, S.A., Kramer, B., Romano, L.T., Shah, S.I., Ray, M.A., Fang, S., and Greene, J.E., in Layered Structures. Epitaxy, and Interfaces, edited by Gibson, J.M. and Dawson, L.R., (North Holland, Amsterdam, 1985), p. 285.Google Scholar