Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T08:36:03.477Z Has data issue: false hasContentIssue false

IR Sources and Modulators Based on InAs/GaSb/AlSb-Family Quantum Wells

Published online by Cambridge University Press:  10 February 2011

J. R. Meyer
Affiliation:
Code 5613, Naval Research Laboratory, Washington, DC 20375
C. L. Felix
Affiliation:
Code 5613, Naval Research Laboratory, Washington, DC 20375
J. I. Malin
Affiliation:
Code 5613, Naval Research Laboratory, Washington, DC 20375
I. Vurgaftman
Affiliation:
Code 5613, Naval Research Laboratory, Washington, DC 20375
C.-H. Lin
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204
R. Q. Yang
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204
S.-S. Pei
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204
L. R. Ram-Mohan
Affiliation:
Worcester Polytechnic Institute, Worcester, MA 01609
Get access

Abstract

We review recent applications of wavefunction engineering to the design of antimonide quantum heterostructures with favorable properties for infrared devices. Examples include electro-optical and all-optical modulators based on Г-L intervalley transfer, type-II quantum well lasers with enhanced gain per injected carrier, and type-II interband cascade lasers predicted to combine low thresholds and high output powers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meyer, J. R., Malin, J. I., Vurgaftman, I., Hoffman, C. A., and Ram-Mohan, L. R., in Strained-Layer Quantum-Wells and Their Applications, ed. Manasreh, M. O. (Gordon and Breach, Newark, in press).Google Scholar
2. Holm, D. A. and Taylor, H. F., IEEE J. Quant. Electron. 25, 2266 (1989).Google Scholar
3. Mii, Y. J., Karunasiri, R. P. G., Wang, K. L., Chen, M., and Yuh, P. F., Appl. Phys. Lett. 56, 1986 (1990).Google Scholar
4. Yang, C.-L. and Pan, D.-S., J. Appl. Phys. 64, 1573 (1988).Google Scholar
5. Brown, E. R., Eglash, S. J., and McIntosh, K. A., Phys. Rev. B 46, 7244 (1992).Google Scholar
6. Samoska, L. A., Brar, B., and Kroemer, H., Appl. Phys. Lett. 62, 2539 (1993).Google Scholar
7. Zhang, Y., Baruch, N., and Wang, W. I., Appl. Phys. Lett. 63, 1068 (1993).Google Scholar
8. Xie, H., Wang, W. I., Meyer, J. R., Hoffman, C. A., and Bartoli, F. J., J. Appl. Phys. 74, 1195 (1993).Google Scholar
9. Shaw, M. J. and Jaros, M., Phys. Rev. B 50, 7768 (1994).Google Scholar
10. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., and Ram-Mohan, L. R., Appl. Phys. Lett. 67, 2756 (1995).Google Scholar
11. Du, Q., Alperin, J., and Wang, W. I., Appl. Phys. Lett. 67, 2218 (1995).Google Scholar
12. Ram-Mohan, L. R. and Meyer, J. R., J. Nonlinear Opt. Phys. Mat. 4, 191 (1995).Google Scholar
13. Meyer, J. R., Kruer, M. R., and Bartoli, F. J., J. Appl. Phys. 51, 5513 (1980).Google Scholar
14. Alibert, C., Joullie, A., Joullie, A. M., and Ance, C., Phys. Rev. B 27, 4946 (1983).Google Scholar
15. Choi, H. K., Turner, G. W., and Le, H. Q., Inst. Phys. Conf. Ser. 144, 1 (1995).Google Scholar
16. Choi, H. K., Turner, G. W., and Manfra, M. J., Electron. Lett. 32, 1296 (1996).Google Scholar
17. Popov, A., Sherstnev, V., Yakovlev, Y., Mucke, R., and Werle, P., Appl. Phys. Lett. 68, 2790 (1996).Google Scholar
18. Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett. 69, 465 (1996).Google Scholar
19. Grein, C. H., Young, P. M., and Ehrenreich, H., J. Appl. Phys. 76, 1940 (1994).Google Scholar
20. Miles, R. H., Chow, D. H., Hasenberg, T. C., Kost, A. R., and Zhang, Y.-H., Inst. Phys. Conf. Ser. 144, 31 (1995).Google Scholar
21. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., and Ram-Mohan, L. R., Appl. Phys. Lett. 67, 757 (1995).Google Scholar
22. Youngdale, E. R., Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Grein, C. H., Young, P. M., Ehrenreich, H., Miles, R. H. and Chow, D. H., Appl. Phys. Lett. 64, 3160 (1994).Google Scholar
23. Miles, R. H. and Hasenberg, T. C., in Antimonide Related Heterostructures and Their Applications, ed. Manasreh, M. O. (Gordon and Breach, Newark, in press).Google Scholar
24. Choi, H. K., Eglash, S. J., and Turner, G. W., Appl. Phys. Lett. 64, 2474 (1994).Google Scholar
25. Malin, J. I., Meyer, J. R., Felix, C. L., Hoffman, C. A., Goldberg, L., Bartoli, F. J., Lin, C.-H., Chang, P. C., Murry, S. J., Yang, R. Q., and Pei, S.-S., Appl. Phys. Lett. 68, 2976 (1996).Google Scholar
26. Malin, J. I., Felix, C. L., Meyer, J. R., Hoffman, C. A., Pinto, J. F., Lin, C.-H., Chang, P. C., Murry, S. J., and Pei, S.-S., Electron. Lett. 32, 1593 (1996).Google Scholar
27. Lin, C.-H., Murry, S. J., Zhang, D., Chang, P. C., Zhou, Y., Pei, S.-S., Malin, J. I., Felix, C. L., Meyer, J. R., Hoffman, C. A., and Pinto, J. F., J. Cryst. Growth (in press).Google Scholar
28. Spanger, B., Schiessl, U., Lambrecht, A., Bottner, H., and Tacke, M., Appl. Phys. Lett. 53, 2582 (1988).Google Scholar
29. Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Chu, S.-N. G., and Cho, A. Y., Appl. Phys. Lett. 68, 3680 (1996).Google Scholar
30. Lin, C.-H., Murry, S. J., Zhang, D., Pei, S.-S., Le, H. Q., Felix, C. L., and Meyer, J. R., to be submitted to Appl. Phys. Lett.Google Scholar
31. Yang, R. Q., Superlatt. Microstruct. 17, 77 (1995).Google Scholar
32. Meyer, J. R., Vurgaftman, I., Yang, R. Q., and Ram-Mohan, L. R., Electron. Lett. 32, 45 (1996).Google Scholar
33. Yang, R. Q. and Pei, S. S., J. Appl. Phys. 79, 8197 (1996).Google Scholar
34. Yang, R. Q., Lin, C.-H., Chang, P. C., Murry, S. J., Zhang, D., Pei, S. S., Kurtz, S. R., Chu, S.-N. G., and Ren, F., Electron. Lett. 32, 1621 (1996).Google Scholar
35. Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., IEEE Phot. Tech. Lett, (in press).Google Scholar
36. Soderstrom, J. R., Chow, D. H., and McGill, T. C., Appl. Phys. Lett. 55, 1094 (1989).Google Scholar