Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-27T04:47:13.630Z Has data issue: false hasContentIssue false

Irradiation Effects on Fe Distributions in Zircaloy-2 and Zr-2.5Nb

Published online by Cambridge University Press:  16 February 2011

Heilong Zou
Affiliation:
Reactor Materials Division, Atomic Energy of Canada Ltd Research, Chalk River Laboratories, Chalk River, ON, Canada, KOJ IJO
G.M. Hood
Affiliation:
Reactor Materials Division, Atomic Energy of Canada Ltd Research, Chalk River Laboratories, Chalk River, ON, Canada, KOJ IJO
J.A. Roy
Affiliation:
Reactor Materials Division, Atomic Energy of Canada Ltd Research, Chalk River Laboratories, Chalk River, ON, Canada, KOJ IJO
R.H. Packwood
Affiliation:
Metals Technology Labs, CANMET, Booth St, Ottawa, ON, Canada
Get access

Abstract

Irradiation of large-grained Zircaloy-2 (Zy) and Zr-2.5Nb (ZN) with 1.5 MeV Ar+ ions to fluences of ≈ 1020/m2 (= 10-30 dpa) at 50, 300 and 420 °C, leads to enhanced ∝-phase Fe dissolution. Electron microprobe analyses showed ∝-phase Fe levels of 250-1500 ppma, compared to equivalent, non-irradiated state values of ≈ 70 ppma. In ZN the β-phase Fe levels fell from about 6000 to 3500 ppma: this result accords, qualitatively, with the loss of Fe from the β-phase following in-service neutron irradiation. Concentration vs depth measurements for Zy showed higher Fe levels towards the surface. Limited data for Ni in Zy show similar behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hood, G.M., Defect and Diffusion Forum, 95–98, 755 (1994)Google Scholar
2. Laursen, T., Hood, G.M., Belec, R., Palmer, G.R., Schultz, R.J. and Whitton, J.L., Nucl. Instr. and Metods, B 64, 475 (1992).Google Scholar
3. Griffiths, M., Gilbert, R.W. and Fidleris, V., ASTM-STP 1023, 658 (1989)Google Scholar
4. Fleck, R.G., Elder, J.E., Causey, A.R. and Holt, R.A. in (Zirconium in the Nuclear industry, Ninth International Symposium, Baltimore MD, June 1993) in press.Google Scholar
5. Zou, H., Hood, G.M., Roy, J.A., Schultz, R.J. and Jackman, J.A., J.Nucl. Mater. 210, 239 (1994)Google Scholar
6. Zou, H., Hood, G.M., Roy, J.A., Packwood, R.H. and Weatherall, V., J. Nucl. Mater. 208, 159 (1994).Google Scholar
7. Griffiths, M., Phythian, W and Dumbill, S., J.Nucl.Mater. 207, 353 (1994).Google Scholar
8. Zou, H., Hood, G.M., Roy, J.A. and Schultz, R.J., Metall. and Mater. Trans. A, 25A, 1359 (1994).Google Scholar
9. Griffiths, M. and Holt, R.A., ASTM-STP 1132, 156 (1991)Google Scholar
10The Stopping and Range of Ions in Solids” by Ziegler, J.F., Biersack, J.P. and Littmark, U., Pergamon Press, New York, 1985: update version 92.19Google Scholar
11. Hood, G.M. and Schultz, R.J., ASTM-STP 1023, 1989 pp 435–50.Google Scholar
12. Sawicki, J.A., Hood, G.M., Schultz, R.J. and Zou, H., J.Nucl. Mater. in press.Google Scholar
13. Motta, A.T. and Olander, D.R., EPRI Report No NP-6872 (1990).Google Scholar
14. Eldrup, M., Hood, G.M., Pedersen, N.J. and Schultz, R.J., Matls. Sci. Forum, 105–110, 997 (1992).Google Scholar
15. King, A.D., Hood, G.M. and Holt, R.A., J.Nucl.Mater. 185, 174 (1991).Google Scholar
16. Hood, G.M., J.Nucl.Mater. 159, 149 (1988)Google Scholar
17. Perovic, A., Perovic, V., Weatherly, G.C., Purdy, G.R. and Fleck, R.G., J.Nucl.Mater. 199, 102 (1993)Google Scholar
18. Hood, G.M., Palmer, G.R., Zou, H., Tan, J., Matsuura, N., Schultz, R.J., Roy, J.A. and Whitton, J.L., unpublished work.Google Scholar