Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-14T10:05:28.055Z Has data issue: false hasContentIssue false

Kinetics and Thermodynamics of Amorphous Silicide Formation in Metal/Amorphous-Silicon Multilayer Thin Films

Published online by Cambridge University Press:  21 February 2011

C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
L. A. Clevenger
Affiliation:
I.B.M. T.J. Watson Research Center, Yorktown Heights, NY 10598
R. DeAvillez
Affiliation:
Departamento de Ciencia doc Materiais e Metalurgia, Pontifico Universidade Catolica, 22452-Rio de Janeiro, Rio de Janeiro, Brazil
E. Ma
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
H. Miura
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Permanent address: Hitachi Mechanical Engineering Research Laboratory, Tsuchiura, Ibaraki, Japan
Get access

Abstract

Formation of intermetallic phases upon heating of films composed of alternating layers of metal and amorphous silicon has been studied using power-compensated differential scanning calorimetry, crosssectional transmission electron microscopy, and thin film x-ray diffractrometry. Results for Ni/amorphous-Si (Ni/a-Si), Ti/a-Si, V/a- Si, and Co/a-Si are reviewed. In the first three cases, an amorphous silicide is the first phase to form. Further heating leads to thickening of the amorphous silicide and eventually to formation and growth of layers of crystalline silicides. In the case of Co/a-Si multilayer films, a crystalline silicide (CoSi) appears to be the first phase to form. In these systems calorimetric measurements suggest that there are barriers to nucleation of the crystalline phases, even though the energy reduction that would accompany their formation from pure components is large. It is suggested that interdiffusion may precede the formation of new phases at the original metal/a-Si interfaces, resulting in a significant decrease in the driving force for nucleation of the crystalline phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Murarka, S.P., Silicides for VLSI ARlications, Academic Press, New York, NY (1983).Google Scholar
2) Herd, S., Tu, K.N., and Ahn, K.Y., Appl. Phys. Letts. 42, 597 (1983).Google Scholar
3) Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).Google Scholar
4) Holloway, K. and Sinclair, R., J. Less-Common Metals 140, 139 (1988).Google Scholar
5) Avillez, R.R. De, Clevenger, L.A., Thompson, C.V. and Tu, K.N., J. of Materials Research 4, 1057 (1989).Google Scholar
6) Clevenger, L.A., Thompson, C.V., Judas, A.J. and Tu, K.N., Proceedings of the First Materials Research Society Int'l. Meeting on Advanced Materials 10, 431 (1989).Google Scholar
7) Clevenger, L.A. and Thompson, C.V., J. Appl. Phys. 67, 1325 (1989).Google Scholar
8) Nathan, M., J. Appl. Phys. 63, 5534 (1988).Google Scholar
9) Clevenger, L.A., Thompson, C.V., deAvillez, R.R. and Ma, E., to appear in J. Vac. Sci. and Tech.Google Scholar
10) Holloway, K., Do, K.B. and Sinclair, R., J. Appl. Phys. 65, 474 (1989).Google Scholar
11) Ma, E., Meng, W.J., Johnson, W.L. and Nicolet, M.A. Appl. Phys. Letts 53, 2033 (1988).Google Scholar
12) Clemens, B.M. and Sinclair, R., MRS Bulletin 15 (2), 19(1990).Google Scholar
13) Johnson, W.L., Progress in Materials Science 30, 81 (1986).Google Scholar
14) Solid State Amorphizing Transformations: Proceedings of the Conference on Solid State Amorphizing Transformations, Los Alamos, NM, August 10–13, 1987, edited by Schwarz, R.B. and Johnson, W.L. (Elsevier Sequoia S.A., Lausanne, 1988).Google Scholar
15) Gosele, U. and Tu, K.N., J. Appl. Phys. 53, 3252 (1982).Google Scholar
16) Gosele, U. and Tu, K.N., J. Appl. Phys. 66, 2619 (1989).Google Scholar
17) Highmore, R.J., Greer, A.L., Leake, J.A., and Evetts, J.E., Materials Letters 6, 401 (1988).Google Scholar
18) Cotts, E.J., Meng, W.J., and Johnson, W.L., Phys. Rev. Letts. j57, 2295 (1986).Google Scholar
19) Highmore, R.J., Somekh, R.E., Evetts, J.E. and Greer, A.L., J. Less- Common Metals 140, 353 (1988).Google Scholar
20) Coffey, K.R., Clevenger, L.A., Barmak, K., Rudman, D.A., and Thompson, C.V., Appl. Phys. Letts. 55, 852 (1989).Google Scholar
21) Ma, E., Thompson, C.V. and Clevenger, L.A., unpublished research.Google Scholar
22) Ma, E., Clevenger, L.A., Thompson, C.V. and Tu, K.N., this volume.Google Scholar
23) Miura, H., Ma, E. and Thompson, C.V., unpublished research.Google Scholar
24) Clevenger, L.A., Ph.D. thesis, Department of Materials Science and Engineering, M.I.T., Cambridge, MA (1989).Google Scholar
25) Clevenger, L.A., Thompson, C.V., Avillez, R.R. de, and Tu, K.N., Mat. Res. Soc. Symp. Proc. 148, 77(1989).Google Scholar
26) Turnbull, D., Met. Trans. 12A, 695 (1981).Google Scholar