Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-14T14:28:26.463Z Has data issue: false hasContentIssue false

Kinetics of Chemical Vapor Deposition of Sic Between 750 and 850°C at 1 Bar Total Pressure

Published online by Cambridge University Press:  15 February 2011

Dieter Neuschütz
Affiliation:
Prof. Dr.-Ing. D. Neuschütz and Dipl.-Ing. F. Salehomoum, Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, D-5100 Aachen, Germany
Farzin Salehomoum
Affiliation:
Prof. Dr.-Ing. D. Neuschütz and Dipl.-Ing. F. Salehomoum, Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, D-5100 Aachen, Germany
Get access

Abstract

The deposition rate from mixtures of methyltrichlorosilane (MTS), hydrogen and methane was measured thermogravimetrically using a hot wall vertical reactor and planar SiC substrates. Below 850 °C and at sufficiently high gas velocities, the rate of the phase boundary reaction could be determined. In the absence of CH4 and at H2 :MTS=55, Si was deposited together with SiC. Addition of CH4 lowered the Si content, pure SiC being deposited at CH4 :MTS above 10. The deposition rate j in the range 750 to 850 °C follows the equation with E(Si) = 160 and E(SiC) = 300 kJ/mol. Reaction mechanisms are presented to account for the observed reaction orders with respect to MTS. Between 900 and 970 °C, the reaction rate decreased with temperature indicating a change in the deposition mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aggor, L., Fritz, W.: Chem.-Ing.-Tech. 43,472(1971).Google Scholar
2. Fitzer, E. et al: Proc. 3rd Int. Conf. SiC, Miami Beach 1973; High Tem.-High Press. 8,187(1976); Z. Werkstofftechn. 11,330(1980); Rev. Int. Hautes Temp. Refr. 17,23(1980).Google Scholar
3. Naslain, R., in: Avanced Structural and Functional Materials, edited by Bunk, W.G.J., (Springer-Verlag Berlin, 1991), pp. 5190.Google Scholar
4. Langlais, F., Pr~bende, C., Tarride, B., Naslain, R.: de Physique, J., Coll. C5, Suppl. au no. 5, tome 50,93(1989).Google Scholar
5. Motojima, S., Hasegawa, M.: J. Vac. Sci. Technol. a8(5), 3763(1990).Google Scholar
6. Chin, J., Gantzel, P.K., Hudson, R.G.: Thin Solid Films 40, 57(1977).Google Scholar
7. Schintlmeister, W., Wallgram, W., Gigl, K.: High Temp.-High Press. 18,211(1986).Google Scholar
8. Burgess, J.N., Lewis, T.J.: Chem. and Ind. 19, 76(1974).Google Scholar
9. Besmann, T.M., Sheldon, B.W., Kaster, M.D.: Surf. and Coat. Technol. 1990.Google Scholar
10. Prébende, C.: Dissertation, L'Université de Bordeaux, 1989.Google Scholar
11. Fischman, G.S., Petuskey, W.T.: J. Amer. Ceram. Soc. 68, 185(1985).Google Scholar
12. Allendorf, M.D., Kee, R.J.: J. Electrochem. Soc. 138,841 (1991).Google Scholar